Proteins

Product Data Sheet

Cat. No.: HY-147183B Molecular Formula: $\mathsf{C_{31}H_{30}CIFN_4O_3S}$

Molecular Weight: 593.11 Target: EGFR

Pathway: JAK/STAT Signaling; Protein Tyrosine Kinase/RTK

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (168.60 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.6860 mL	8.4301 mL	16.8603 mL
	5 mM	0.3372 mL	1.6860 mL	3.3721 mL
	10 mM	0.1686 mL	0.8430 mL	1.6860 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	JBJ-09-063 hydrochloride is a mutant-selective allosteric EGFR inhibitor with IC ₅₀ s of 0.147 nM, 0.063 nM, 0.083 nM and 0.396 nM for EGFR L858R, EGFR L858R/T790M, EGFR L858R/T790M/C797S and EGFRLT/L747S. JBJ-09-063 hydrochloride effectively reduces EGFR, Akt and ERK1/2 phosphorylation. JBJ-09-063 hydrochloride is effective across EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant models. JBJ-09-063 hydrochloride can be used for researching EGFR-mutant lung cancer ^[1] .					
IC ₅₀ & Target	EGFR L858R 0.147 nM (IC ₅₀)	EGFR L858R/T790M 0.063 nM (IC ₅₀)	EGFR L858R/T790M/C797S 0.083 nM (IC ₅₀)	EGFRLT/L747S 0.396 nM (IC ₅₀)		
In Vitro	JBJ-09-063 is remarkably effective at inhibiting cell growth and leads to a significant increase in apoptosis, even though H3255GR cells are resistant to gefitinib as a single agent, as they contain an EGFR T790M mutation ^[1] . JBJ-09-063 is effective in H1975 cells exogenously expressing the osimertinib-resistant mutations ^[1] . JBJ-09-063 exhibits IC $_{50}$ s of 50 nM and 6 nM in Ba/F3 cell when use alone or combination with Cetuximab (HY-P9905) ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
In Vivo	good efficacy upon oral dosin	g ^[2] .	armacokinetics properties and is somethods. They are for reference on	•		

Animal Model:	Mice ^[2]	Mice ^[2] 3 mg/kg for i.v., 20 mg/kg for p.o.					
Dosage:	3 mg/kg for i.v., 20 n						
Administration:	i.v. and p.o.; single c	i.v. and p.o.; single dosage					
Result:	Pharmacokinetic Parameters of JBJ-09-063 in mice ^[2] .						
	Cl (mL/min/kg), i.v.	T _{1/2} (h)	V _{ss} (L/kg)	F (%)	AUC 8h (ng·h/mL)		
	15.7	2.3	2.5	15	2398		

REFERENCES

[1]. To C, et al. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat Cancer. 2022 Apr;3(4):402-417.

[2]. Gero TW, Scott DA, et al. Quinazolinones as allosteric fourth-generation EGFR inhibitors for the treatment of NSCLC. Bioorg Med Chem Lett. 2022 Jul 15;68:128718.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA