

Product Data Sheet

J-113863

 Cat. No.:
 HY-103360

 CAS No.:
 353791-85-2

 Molecular Formula:
 C₃₀H₃₇Cl₂IN₂O₂

Molecular Weight: 655.44

Target: CCR

Pathway: GPCR/G Protein; Immunology/Inflammation

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (76.28 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.5257 mL	7.6285 mL	15.2569 mL
	5 mM	0.3051 mL	1.5257 mL	3.0514 mL
	10 mM	0.1526 mL	0.7628 mL	1.5257 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (3.81 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (3.81 mM); Clear solution

BIOLOGICAL ACTIVITY

Description J-113863 is a potent and selective CCR1 antagonist with IC₅₀ values of 0.9 nM and 5.8 nM for human and mouse CCR1

receptors, respectively. J-113863 is also a potent antagonist of the human CCR3 (IC $_{50}$ of 0.58 nM), but a weak antagonist of the mouse CCR3 (IC $_{50}$ of 460 nM). J-113863 is inactive against CCR2, CCR4 and CCR5, as well as the LTB4 or TNF- α receptors.

Anti-inflammatory effect [1][2][3].

IC₅₀ & Target CCR1 CCR3 CCR3

0.9 nM (IC₅₀, Human CCR1) 5.8 nM (IC₅₀, Mouse CCR1) 0.58 nM (IC₅₀, Human 460 nM (IC₅₀, Mouse CCR3)

CCR3)

Modified Vaccinia virus Ankara (MVA) but not MVA and vaccinia virus (VACV) infected MH-S cells increase the expression of

the CXCR2 acting chemokine CXCL2. MH-S cells constitutively produce CCL2 and CCR1 acting chemokines CCL3, CCL5 and

In Vitro

CCL9. Consequently, supernatants of mock treated and virus infected MH-S cells induce chemotaxis of murine promyelocyte MPRO cells and human monocytic THP-1 cells at the same level. However, supernatants of MVA infected MH-S cells significantly increase chemotaxis of the CCR2 deficient human monocytic cell line U-937. Chemotaxis of all above cell types is inhibited by J-113863^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

J-113863 (3-10 mg/kg; intraperitoneal injection; once daily; for 11 days; DBA-1 male mice) treatment improves paw inflammation and joint damage, and dramatically decreases cell infiltration into joints in arthritic mice^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	DBA-1 male mice (10-12 weeks) induced with Collagen ^[2]	
Dosage:	3 mg/kg, 10 mg/kg	
Administration:	Intraperitoneal injection; once daily; for 11 days	
Result:	Improved paw inflammation and joint damage, and dramatically decreased cell infiltration into joints.	

CUSTOMER VALIDATION

- Bioact Mater. 2021 Jan 7;6(7):2039-2057.
- Inflamm Regen. 2023 Mar 3;43(1):18.
- J Ethnopharmacol. 2022 May 10;289:115051.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Lehmann MH, et al. Modified Vaccinia virus Ankara but not vaccinia virus induces chemokine expression in cells of the monocyte/macrophage lineage. Virol J. 2015 Feb 12;12:21.

[2]. Amat M, et al. Pharmacological blockade of CCR1 ameliorates murine arthritis and alters cytokine networks in vivo. Br J Pharmacol. 2006 Nov;149(6):666-75.

[3]. Naya A, et al. Design, synthesis, and discovery of a novel CCR1 antagonist. J Med Chem. 2001 Apr 26;44(9):1429-35.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA