Proteins

Product Data Sheet

ICA-27243

Cat. No.: HY-122114 CAS No.: 325457-89-4 Molecular Formula: $C_{12}H_7ClF_2N_2O$ Molecular Weight: 268.65

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

-20°C Storage: Powder 3 years

4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (930.58 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.7223 mL	18.6116 mL	37.2232 mL
	5 mM	0.7445 mL	3.7223 mL	7.4446 mL
	10 mM	0.3722 mL	1.8612 mL	3.7223 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (7.74 mM); Clear solution

BIOLOGICAL ACTIVITY

Description ICA-27243 is a selective, potent and orally active KCNQ2/Q3 potassium channel opener with an EC $_{50}$ of 0.38 μ M. ICA-27243 is less effective at activating KCNQ4 and KCNQ3/Q5. ICA-27243 has antiepileptic and anticonvulsant effects^{[1][2]}.

IC₅₀ & Target EC50: 0.38 μM (KCNQ2/Q3 potassium channel)^[2]

In Vitro

In SH-SY5Y human neuroblastoma cells, ICA-27243 produces membrane potential hyperpolarization that could be prevented by coadministration with the M-current inhibitors XE-991 and Linopirdine. ICA-27243 enhances both ⁸⁶Rb⁺ efflux $(EC_{50} = 0.2 \mu M)$ and whole-cell currents in Chinese hamster ovary cells stably expressing heteromultimeric KCNQ2/Q3 channels (EC $_{50}$ = 0.4 μ M). Activation of KCNQ2/Q3 channels is associated with a hyperpolarizing shift of the voltage dependence of channel activation ($V_{1/2}$ shift of -19 mV at 10 μ M)^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Page 1 of 2

In Vivo

ICA-27243 (1-100 mg/kg; oral administration; male CD-1 mice) has anticonvulsant activity (ED $_{50}$ of 8.4 mg/kg) in the mouse maximal electroshock epilepsy model^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male CD-1 mice with electroshock assay ^[1]	
Dosage:	1-100 mg/kg	
Administration:	Oral administration	
Result:	Produced a dose-dependent increase in the latency to hind limb extension, exhibiting an ED $_{50}$ value of 8.4 mg/kg.	

CUSTOMER VALIDATION

• Cell Death Discov. 2022 Sep 20;8(1):391.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Wickenden AD, et al. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator. Mol Pharmacol. 2008 Mar;73(3):977-86.

[2]. Amato G, et al. N-Pyridyl and Pyrimidine Benzamides as KCNQ2/Q3 Potassium Channel Openers for the Treatment of Epilepsy. ACS Med Chem Lett. 2011 Mar 31;2(6):481-4.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA