HS-131

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway:	HY-122878 2084850-40-6 C ₇₁ H ₉₅ N ₇ O ₁₃ S ₂ 1318.68 HSP Cell Cycle/DNA Damage; Metabolic Enzyme/Protease	$ \begin{array}{c} \begin{array}{c} & & & \\ & &$
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

Description	HS-131, a near infrared dye tethered Hsp90 inhibitor, is able to detect oncogene-driven breast cancers, including multiple different molecular subtypes of human breast cancers ^[1] .			
In Vivo	HS131 (10 nmol/mouse) could label breast cancers with different molecular subtypes, including MCF-7 and T-47D for luminal type, BT474M1 and KPL-4 for HER2+ subtype, MDA-MB-231 and MDA-MB-468 for triple negative subtype were chosen after considering the tumorigenic capacities of breast cancer cell lines in SCID mice ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	SCID-beige mice bearing human breast cancer xenografts of different molecularsubtypes ^[1] .		
	Dosage:	10 nmol/mouse.		
	Administration:	Injected intravenously.		
	Result:	All breast cancer xenografts with different molecular subtypes showed stronger nIR signals in tumor by intravenous administration of HS131 compared to HS152, and the retention of the nIR signals was detectable even at the 24 h time point in HS131 injected mice.		

REFERENCES

[1]. Takuya Osada, et al. In Vivo Detection of HSP90 Identifies Breast Cancers with Aggressive Behavior. Clin Cancer Res. 2017 Dec 15;23(24):7531-7542.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Product Data Sheet

Page 1 of 1