Proteins

HQNO

Cat. No.: HY-130055 CAS No.: 341-88-8 Molecular Formula: $C_{16}H_{21}NO_{2}$ Molecular Weight: 259.34

Target: Mitochondrial Metabolism Pathway: Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

> -20°C 1 month

	ŎН
^	N O

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 5 mg/mL (19.28 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.8559 mL	19.2797 mL	38.5594 mL
	5 mM	0.7712 mL	3.8559 mL	7.7119 mL
	10 mM	0.3856 mL	1.9280 mL	3.8559 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 0.5 mg/mL (1.93 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.5 mg/mL (1.93 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a K_d of 64 nM for complex III ^[1] . HQNO is a potent inhibitor of mitochondrial NDH-2 in many species ^[2] .
IC ₅₀ & Target	NDH-2 ^[2]
In Vitro	HQNO is a potent inhibitor of mitochondrial type II NADH:quinone oxidoreductase (NDH-2) in many species, including Yarrowia lipolytica, S. cerevisiae, Gluconobacter oxydans, T. gondii, P. falciparum, and S. aureus. HQNO targets the Q-site of NDH-2 ^[2] . HQNO concentrations are varied from 0 to 100 μM and 0 to 300 μM for wild-type (WT) and I379E C. thermarum NDH-2 variant, respectively to determine IC ₅₀ values. WT NDH-2 has an IC ₅₀ value of 10.5±1.3 μM HQNO in the presence of 400 μM

Menadione (MD). In the presence of 50 μ M MD, the IC₅₀ value for HQNO decreases slightly to 7.3 \pm 1.2 μ M and near complete inhibition (~15% residual activity) is observed with >50 μ M HQNO. At 50 μ M MD, HQNO inhibition is observed with an IC₅₀ value of 54.3 \pm 1.2 μ M^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Int J Parasitol Drugs Drug Resist. 2023 Feb 4;21:74-80.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. N J Jacobs, et al. Evidence for Involvement of the Electron Transport System at a Late Step of Anaerobic Microbial Heme Synthesis. Biochim Biophys Acta. 1977 Jan 6;459(1):141-4.

[2]. Jessica Petri, et al. Structure of the NDH-2 - HQNO Inhibited Complex Provides Molecular Insight Into Quinone-Binding Site Inhibitors. Biochim Biophys Acta Bioenerg. 2018 Jul;1859(7):482-490.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA