

Product Data Sheet

HNMPA-(AM)3

Cat. No.: HY-124097

CAS No.: 120944-03-8

Molecular Formula: $C_{20}H_{23}O_{10}P$ Molecular Weight: 454.36

Target: Insulin Receptor

Pathway: Protein Tyrosine Kinase/RTK

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: ≥ 100 mg/mL (220.09 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2009 mL	11.0045 mL	22.0090 mL
	5 mM	0.4402 mL	2.2009 mL	4.4018 mL
	10 mM	0.2201 mL	1.1004 mL	2.2009 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description HNMPA-(AM)3 is a cell-permeable and selective insulin receptor tyrosine kinase inhibitor analog of HNMPA. HNMPA-(AM)3

greatly inhibits the ability of prothoracicotropic hormone (PTTH) to activate ERK phosphorylation and stimulate ecdysteroidogenesis. HNMPA-(AM)3 is also effective in inhibiting ecdysteroid production (IC $_{50}$ =14.2 μ M) and insulin receptor

activity (IC $_{50}$ is 14.2 μM and 200 μM in mosquitoes and mammals, respectively) $^{[1][2]}.$

IC₅₀ & Target IC50: 14.2 μM (ecdysteroid production), 14.2 μM (mosquito insulin receptor), 200 μM (mammalian insulin receptor))^[2]

REFERENCES

[1]. Riehle MA, et al. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 1999 Oct;29(10):855-60.

[2]. Gu SH, et al. PTTH-stimulated ERK phosphorylation in prothoracic glands of the silkworm, Bombyx mori: role of Ca²⁺/calmodulin and receptor tyrosine kinase. J Insect Physiol. 2010;56(1):93-101.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com