

Product Data Sheet

Gnetol

 Cat. No.:
 HY-126052

 CAS No.:
 86361-55-9

 Molecular Formula:
 $C_{14}H_{12}O_4$

Molecular Weight: 244.24

Target: Tyrosinase; COX; HDAC

Pathway: Metabolic Enzyme/Protease; Immunology/Inflammation; Cell Cycle/DNA Damage;

Epigenetics

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (409.43 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.0943 mL	20.4717 mL	40.9433 mL
	5 mM	0.8189 mL	4.0943 mL	8.1887 mL
	10 mM	0.4094 mL	2.0472 mL	4.0943 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (10.24 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (10.24 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (10.24 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Gnetol is a phenolic compound isolated from the root of Gnetum montanum . Gnetol potently inhibits COX-1 (IC $_{50}$ of 0.78 μ			
	M) and HDAC. Gnetol is a potent tyrosinase inhibitor with an IC $_{50}$ of 4.5 μ M for murine tyrosinase and suppresses melanin			
	biosynthesis. Gnetol has antioxidant, antiproliferative, anticancer and hepatoprotective activity. Gnetol also possesses concentration-dependent α -Amylase, α -glucosidase, and adipogenesis activities [1][2][3].			

IC₅₀ & Target COX-1 Tyrosinase HDAC 0.78 μM (IC₅₀) 4.5 μM (IC₅₀)

In Vitro	The antiproliferative activities of Gnetol are tested in HCT-116, Hep-G2, MDA-MB-231, and PC-3 cell lines by measuring cell viability after treatment with 4.1 μ M, 40.9 μ M, 204.7 μ M, 409.4 μ M, and 1023.6 μ M. Gnetol shows concentration-dependent reductions in cell viability in cancer cell lines with greatest activity in colorectal cancer ^[1] . Gnetol at 200 μ g/mL significantly offers the highest protection of 54.3% against the toxicant. A lower dose of Gnetol (50 μ g/mL) also shields the cell line from the toxic effects of CCl4 ^[3] . The ligand molecule TGF- β and PPAR α protein show that Gnetol has the binding affinity of 7.0 and 8.4, respectively ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Male Sprague-Dawley rats were cannulated and dosed either intravenously with Gnetol (10 µg/kg) or orally (100 mg/kg). After oral and intravenous administration, Gnetol is detected in both serum and urine as the parent compound and as a glucuronidated metabolite. The bioavailability of Gnetol is determined to be 6%. Gnetol is rapidly glucuronidated and is excreted in urine and via nonrenal routes ^[1] . Pretreatment of Male NIH Swiss mice (20-35 g) with Gnetol (50mg/kg, SC) is able to increase the latency period to response in analgesia models ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Remsberg CM, et al. Preclinical Pharmacokinetics and Pharmacodynamics and Content Analysis of Gnetol in Foodstuffs. Phytother Res. 2015 Aug;29(8):1168-79.
- [2]. Ohguchi K, et al. Gnetol as a potent tyrosinase inhibitor from genus Gnetum. Biosci Biotechnol Biochem. 2003 Mar;67(3):663-5.
- [3]. Jinadatta P, et al. In silico, in vitro: antioxidant and antihepatotoxic activity of gnetol from Gnetum ula Brongn. Bioimpacts. 2019;9(4):239-249.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA