Product Data Sheet

GW 590735

 Cat. No.:
 HY-106278

 CAS No.:
 343321-96-0

 Molecular Formula:
 $C_{23}H_{21}F_3N_2O_4S$

Molecular Weight: 478.48

Target: PPAR

Pathway: Cell Cycle/DNA Damage
Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (522.49 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0900 mL	10.4498 mL	20.8995 mL
	5 mM	0.4180 mL	2.0900 mL	4.1799 mL
	10 mM	0.2090 mL	1.0450 mL	2.0900 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description GW 590735 is a potent and selective PPARα agonist. GW 590735 shows EC_{50} =4 nM on PPARα and at least 500-fold selectivity versus PPARδ and PPARγ. GW 590735 can be used for the research of dyslipidemia^[1].

In Vivo GW 590735 (0.5-5 mg/kg; orally twice a day for 5 days) is able to lower LDLc and triglycerides (TG) and increase HDL

cholesterol in the Apo-A-I-transgenic mouse model (male C57BL/6 mice transgenic for human ApoA-I)^[1].

 ${\sf GW\,590735\,(intravenous\,administration; 2.7\,mg/kg; rat)\,treatment\,shows\,Cl, Vd, T_{1/2}, and\,F\%\,are\,5\,mL/min/kg, 1\,L/kg, 2.4\,mu}$

hours and 47%, respectively^[1].

 ${\it GW\,590735\,(intravenous\,administration;\,2\,mg/kg;\,dog)\,treatment\,shows\,Cl,\,Vd,\,T_{1/2},\,and\,F\%\,\,are\,13\,\,mL/min/kg,\,2.8\,\,L/kg,\,2.6\,L/kg,\,2.6\,\,L/kg,\,2.6\,\,L/kg,\,2.6\,\,L/kg,\,2.6\,\,L/kg,\,2.6\,\,L/kg,\,2.6\,$

hours and 85%, respectively^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Sierra ML, et al. Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPARalpha agonists. 1. Discovery of a novel series of potent HDLc raising agents. J

Med Chem. 2007;50(4):685-695.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com