# **GNE-9605**

Cat. No.: HY-12282 CAS No.: 1536200-31-3 Molecular Formula:  $C_{17}H_{20}ClF_{4}N_{7}O$ 

Molecular Weight: 449.83 Target: LRRK2 Pathway: Autophagy

Powder Storage:

-20°C 3 years 2 years

In solvent -80°C 2 years

> -20°C 1 year

**Product** Data Sheet

### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 100 mg/mL (222.31 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 2.2231 mL | 11.1153 mL | 22.2306 mL |
|                              | 5 mM                          | 0.4446 mL | 2.2231 mL  | 4.4461 mL  |
|                              | 10 mM                         | 0.2223 mL | 1.1115 mL  | 2.2231 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.62 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (4.62 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.62 mM); Clear solution

## **BIOLOGICAL ACTIVITY**

Description

GNE-9605 is a potent, orally active, selective Leucine-rich repeat kinase 2 (LRRK2) inhibitor with an IC $_{50}$  value of 18.7 nM. GNE-9605 inhibits LRRK2 Ser1292 autophosphorylation. GNE-9605 can be used in research of Parkinson's disease (PD) [1].

In Vivo

GNE-9605 (10 and 50 mg/kg; i.p.; once) inhibits LRRK2 Ser1292 autophosphorylation in BAC transgenic mice expressing human LRRK2 protein<sup>[1]</sup>.

GNE-9605 (1 mg/kg, p.o.; 0.5 mg/kg, i.v.; once) displays LRRK2  $K_i$  in the biochemical assay of 2 nM as well as a cellular IC50 of 19 nM. GNE-9605 has a total plasma clearance with excellent oral bioavailability  $^{[1]}$ .

| MCE has not independe | ntly confirmed the accuracy of these methods. They are for reference only.                                                   |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Animal Model:         | BAC transgenic mice expressing human LRRK2 protein $^{[1]}$ .                                                                |  |  |
| Dosage:               | 10 and 50 mg/kg                                                                                                              |  |  |
| Administration:       | Intraperitoneal injection; once                                                                                              |  |  |
| Result:               | Inhibited LRRK2 Ser1292 autophosphorylation in a dose-dependent manner.                                                      |  |  |
|                       |                                                                                                                              |  |  |
| Animal Model:         | BAC transgenic mice expressing human LRRK2 protein <sup>[1]</sup> .                                                          |  |  |
| Dosage:               | 1 mg/kg, p.o.; 0.5 mg/kg, i.v.                                                                                               |  |  |
| Administration:       | Oral administration and intravenous injection; once                                                                          |  |  |
| Result:               | Demonstrated a total plasma clearance of 26 mL min <sup>-1</sup> kg <sup>-1</sup> with excellent oral bioavailability (90%). |  |  |

### **REFERENCES**

[1]. Estrada AA, et, al. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2014 Feb 13;57(3):921-36.

[2]. Kumar S, et, al. Exploring the focal role of LRRK2 kinase in Parkinson's disease. Environ Sci Pollut Res Int. 2022 May;29(22):32368-32382.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$ 

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA