

Product Data Sheet

GNE-6640

Molecular Weight:

Cat. No.: HY-112937 CAS No.: 2009273-67-8 Molecular Formula: $C_{20}H_{18}N_4O$

Target: Deubiquitinase

Pathway: Cell Cycle/DNA Damage

Powder -20°C Storage: 3 years

330.38

2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 5 mg/mL (15.13 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0268 mL	15.1341 mL	30.2682 mL
	5 mM	0.6054 mL	3.0268 mL	6.0536 mL
	10 mM	0.3027 mL	1.5134 mL	3.0268 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description ${\sf GNE-6640} \ is \ a \ selective \ and \ non-covalent \ inhibitor \ of \ ubiquitin \ epecific \ peptidase \ 7 \ (USP7), \ with \ IC_{50} \ values \ of \ 0.75 \ \mu M, \ 0.43 \ (USP7), \ values \ of \ 0.75 \ (USP7), \ values \ of \ 0.75 \ (USP7)$ μ M, 20.3 μ M and 0.23 μ M for full length USP7, USP7 catalytic domain, full length USP43 and Ub-MDM2, respectively [1][2].

 $IC50: 0.75\,\mu\text{M}(\text{full length USP7}), 0.43\,\mu\text{M}(\text{USP7 catalytic domain}), 20.3\,\mu\text{M}(\text{full length USP43}), 0.23\,\mu\text{M}(\text{Ub-MDM2})^{[1]}.$ IC₅₀ & Target

GNE-6640 promotes endogenous MDM2 ubiquitination with Lys48 (K48)-linked polyubiquitin chains, which directs proteasomal degradation 13. GNE-6640 targets cellular USP7, MDM2, and p53 signalling pathways. GNE-6640 decreases viability of 108 cell lines with IC₅₀ \leq 10 μ M. Combining GNE-6640 with doxorubicin or cisplatin (DNA-damaging agents), which could activate the p53 response and enhance USP7 inhibitor efficacy. GNE-6640 could induce tumor cell death. GNE-6640 enhances cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

In Vitro

• Cell Rep. 2022 Sep 20;40(12):111396.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Tanguturi P, et al. The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol. 2020 Apr;85(4):627-639.
- [2]. Kategaya L, et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature. 2017 Oct 26;550(7677):534-538.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com