Proteins

Screening Libraries

GDC-0310

Cat. No.: HY-139081 CAS No.: 1788063-52-4 Molecular Formula: $\mathsf{C_{25}H_{29}Cl_{2}FN_{2}O_{4}S}$

Molecular Weight: 543.48

Target: Sodium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder

> 4°C 2 years

3 years

In solvent -80°C 6 months

iv), respectively^[1].

-20°C

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 4 mg/mL (7.36 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	1.8400 mL	9.2000 mL	18.3999 mL	
	5 mM	0.3680 mL	1.8400 mL	3.6800 mL	
	10 mM				

Please refer to the solubility information to select the appropriate solvent.

ы	$\mathbf{\alpha}$	\sim 1	$\sim \Lambda$		\sim T	IVITY
- 61		 СΠ		1 A		

DIOLOGICAL ACTIV						
Description	GDC-0310 is a selective acyl-sulfonamide Na $_{\rm V}$ 1.7 inhibitor, with an IC $_{50}$ of 0.6 nM for hNa $_{\rm V}$ 1.7 $^{[1]}$.					
IC ₅₀ & Target	hNa _V 1.4 3.4 nM (IC ₅₀)	hNa _v 1.2 38 nM (IC ₅₀)	hNa _V 1.6 198 nM (IC ₅₀)	hNa _V 1.1 202 nM (IC ₅₀)		
	hNa _V 1.5 551 nM (IC ₅₀)	Na _v 1.7 0.6 nM (IC ₅₀)				
In Vitro	GDC-0310 exhibits an EC $_{50}$ of 1.1 μ M in vivo and a K $_{i}$ of 1.8 nM for Na $_{v}$ 1.7 $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
In Vivo	GDC-0310 shows substantially improved Na _v selectivity and ADME properties ^[1] . GDC-0310 exhibits t1/2 values of 5 h, 46 h and 4.4 h in rat (5 mg/kg, iv), dog (1 mg/kg, iv) and cynomolgus monkeys (2 mg/kg,					

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES					
	ery of Acyl-sulfonamide Na v	1.7 Inhibitors GDC-0276 and GD	C-0310. J Med Chem. 2021 Mar 25;64(6):2953-2966.		
2]. Lei Xu, et al. Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today. 2019 Jul;24(7):1389-1397.					
	Caution: Product has no	ot been fully validated for m	edical applications. For research use only.		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress.com		

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com