Product Data Sheet

Fluoroethylnormemantine hydrochloride

Cat. No.: HY-139048A CAS No.: 1639210-25-5 Molecular Formula: $C_{12}H_{21}CIFN$ 233.75 Molecular Weight: iGluR Target:

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

-20°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

DMSO: ≥ 100 mg/mL (427.81 mM) In Vitro

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.2781 mL	21.3904 mL	42.7808 mL
	5 mM	0.8556 mL	4.2781 mL	8.5561 mL
	10 mM	0.4278 mL	2.1390 mL	4.2781 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Fluoroethylnormemantine hydrochloride, a derivative of Memantine, is an antagonist of the N-methyl-D-aspartate (NMDA) Description receptor. [18F]-Fluoroethylnormemantine hydrochloride can be used as a positron emission tomography (PET) tracer. Fluoroethylnormemantine hydrochloride exhibits anti-amnesic, neuroprotective, antidepressant-like and fear-attenuating effects^{[1][2][3]}. NMDA receptor^[1] IC₅₀ & Target

In Vivo Fluoroethylnormemantine (0.1-10 mg/kg; a single i.p.) shows anti-amnesic effects on A β 25-35-induced learning impairments in mice^[1].

> Fluoroethylnormemantine (0.1-10 mg/kg; i.p. once daily for 7 days) attenuates A β 25-35-induced behavioral deficits, neuroinflammation, oxidative stress, apoptosis, and cell loss in $mice^{[1]}$.

Fluoroethylnormemantine (1-20 mg/kg; a single injection) decreases behavioral despair in the forced swim test (FST) and reduces fear behavior in the cued fear conditioning (FC) and extinction training in rats^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Swiss CD-1 mice (7-9 weeks) were injected with A $\beta_{25-35}^{[1]}$	
Dosage:	0.1, 0.3, 1, 3, 10 mg/kg	
Administration:	I.p. 30 minutes before the behavioral tests	
Result:	Attenuated A β ₂₅₋₃₅ -induced spontaneous alternation deficit, passive avoidance deficit, and novel object exploration deficit.	

REFERENCES

- [1]. Couly S, et, al. Anti-Amnesic and Neuroprotective Effects of Fluoroethylnormemantine in a Pharmacological Mouse Model of Alzheimer's Disease. Int J Neuropsychopharmacol. 2021 Feb 15;24(2):142-157.
- [2]. Chen BK, et, al. Fluoroethylnormemantine, a novel derivative of memantine, facilitates extinction learning without sensorimotor deficits. Int J Neuropsychopharmacol. 2021 Feb 25;pyab007.
- [3]. Chen BK, et, al. Fluoroethylnormemantine, a novel NMDA receptor antagonist, for the prevention and treatment of stress-induced maladaptive behavior. Biological Psychiatry. 2021 May 9.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA