Product Data Sheet

Filanesib

Cat. No.: HY-15187 CAS No.: 885060-09-3

Molecular Formula: $C_{20}H_{22}F_{2}N_{4}O_{2}S$

Molecular Weight: 420

Target: Kinesin; Apoptosis

Pathway: Cell Cycle/DNA Damage; Cytoskeleton; Apoptosis

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 100 mg/mL (238.10 mM)

* "≥" means soluble, but saturation unknown.

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.3810 mL	11.9048 mL	23.8095 mL
	5 mM	0.4762 mL	2.3810 mL	4.7619 mL
	10 mM	0.2381 mL	1.1905 mL	2.3810 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.95 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.95 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.95 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Filanesib (ARRY-520) is a selective and noncompetitive kinesin spindle protein (KSP) inhibitor, with an IC ₅₀ of 6 nM for human KSP. Filanesib induces cell death by apoptosis in vitro. Filanesib has potent anti-proliferative activity ^[1] .
IC ₅₀ & Target	KSP 6 nM (IC ₅₀)

Page 1 of 3

In Vitro

Filanesib induces mitotic arrest in multiple cell lines^[1].

Filanesib exhibits anti-proliferative against a broad range of human and rodent tumor cell lines, including a variety of leukemias and solid tumors, with EC_{50} s between 0.4 nM and 14.4 nM^[1].

Filanesib (0.001-0.1 nM; 36 hours) induces apoptosis in a dose-dependent manner in HeLa cells^[1].

Filanesib (3.13-6.25 nM; 44 hours) causes accumulation of cells in the G2/M phase of the cell cycle in a dose-dependent manner in HeLa cells $^{[1]}$.

Filanesib potently induces cell cycle block and subsequent death in leukemic cells via the mitochondrial pathway and has potential to eradicate AML progenitor cells^[2].

Filanesib (3 μM; 6-24 hours) is able to induce caspase-2 activation^[3].

Filanesib (0.003-3 μ M; 24-48 hours) is cytotoxic in Type II EOC cells^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Apoptosis Analysis^[1]

Cell Line:	Hela cells
Concentration:	0.01-0.1 nM
Incubation Time:	36 hours
Result:	Induced the formation of nucleosomes and activation of caspases-3 and 7.

Cell Cycle Analysis^[1]

Cell Line:	HeLa cells
Concentration:	0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM
Incubation Time:	44 hours
Result:	Resulted in G2/M arrest.

Western Blot Analysis^[3]

Cell Line:	Type II EOC cells
Concentration:	3 μM
Incubation Time:	6 hours, 12 hours, 24 hours
Result:	Induced caspase-2 activation in a time-dependent manner.

Cell Cytotoxicity Assay^[3]

Cell Line:	Type II EOC cell lines (A2780, CP70, 01-28)
Concentration:	0.003 μΜ, 0.03 μΜ, 0.3μΜ, 3 μΜ
Incubation Time:	24 hours , 48 hours
Result:	Effectively decreased cell viability in a time-dependent manner in the Type II EOC cell lines.

In Vivo

Filanesib (20 mg/kg, 30 mg/kg; i.p.; q4dx3) has anti-tumor activitiy in vivo^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model: Female nude mice, EOC mice xenograft model ^[3]

Dosage:	20 mg/kg, 30 mg/kg
Administration:	Intraperitoneal injection, q4dx3
Result:	Induced a decrease in tumor kinetics in a dose-dependent manner.

CUSTOMER VALIDATION

- Cell Discov. 2022 Sep 14;8(1):92.
- Cancer Lett. 2021 Feb 27.
- Preprints. 2023 Sep 30.
- Methods Mol Biol. 2018;1711:351-398.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Christine Lemieux, et al. ARRY-520, a Novel, Highly Selective KSP Inhibitor with Potent Anti-Proliferative Activity. AACR Annual Meeting. 2007.

[2]. BZ Carter, et al. Inhibition of KSP by ARRY-520 Induces Cell Cycle Block and Cell Death via the Mitochondrial Pathway in AML Cells.

[3]. Ki Hyung Kim, et al. KSP inhibitor ARRY-520 as a substitute for Paclitaxel in Type I ovarian cancer cells. J Transl Med. 2009; 7: 63.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com