

FPL 62064

Cat. No.: HY-105024 CAS No.: 103141-09-9 Molecular Formula: $C_{16}H_{15}N_{3}O$ Molecular Weight: 265.31

Target: Lipoxygenase; COX

Pathway: Metabolic Enzyme/Protease; Immunology/Inflammation

-20°C Storage: Powder 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (942.29 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.7692 mL	18.8459 mL	37.6918 mL
	5 mM	0.7538 mL	3.7692 mL	7.5384 mL
	10 mM	0.3769 mL	1.8846 mL	3.7692 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.67 mg/mL (6.29 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.67 mg/mL (6.29 mM); Clear solution

BIOLOGICAL ACTIVITY

Description FPL 62064 is a potent 5-lipoxygenase (5-LOX) and COX dual inhibitor, with IC₅₀ values of 3.5 μM and 3.1 μM for RBL-1 cytosolic 5-lipoxygenase and prostaglandin synthetase (cyclooxygenase), respectively. FPL 62064 has potent anti-

inflammatory activity [1][2].

IC₅₀ & Target IC50: 3.5 μM (RBL-1 cytosolic 5-1ipoxygenase), and 3.1 μM (prostaglandin synthetase)^[1]

In Vitro FPL 62064 inhibits both 5-1ipoxygenase (IC₅₀ of 3.5 μM for RBL-1 cytosolic 5-1ipoxygenase) and prostaglandin synthetase (IC $_{50}$ of $3.1\,\mu\mathrm{M}$ for seminal vesicle prostaglandin synthetase) with equal facility in the isolated enzyme screens. However in the $intact\ RBL-I\ cell\ prostagland in\ synthetase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ is\ more\ readily\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ (IC_{50}\ of\ 3.6\ \mu M)\ inhibited\ by\ FPL\ 62064\ than\ is\ 5-1 ipoxygenase\ inhibited\ by\ FPL\ 62064\ than\ inhibited\ by\ FPL\ 62064\ than\$

of 31 μ M). This difference in sensitivity is not reflected in the mouse macrophage where the IC₅₀s for leukotriene (IC₅₀ of 0.72

		μ M) and prostaglandin (IC $_{50}$ of 0.43 μ M) production are similar ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	immune-complex $^{[1]}$.	FPL 62064 (5-20 mg/kg; intraperitoneal injection; female LACA mice) treatment inhibits peritoneal inflammation induced by immune-complex ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Female LACA mice (20-30 g) injected with immune complex ^[1] .		
	Dosage:	5 mg/kg, 10 mg/kg, 20 mg/kg		
	Administration:	Intraperitoneal injection		
	Result:	Produced a dose-related inhibition of dye extravasation, leukotriene C_4 (LTC $_4$) and prostaglandin E_2 (PGE $_2$) formation.		

REFERENCES

[1]. Blackham A, et al. FPL 62064, a topically active 5-lipoxygenase/cyclooxygenase inhibitor. Agents Actions. 1990 Jun;30(3-4):432-42.

[2]. Shabaan MA, et al. Synthesis and biological evaluation of pyrazolone analogues as potential anti-inflammatory agents targeting cyclooxygenases and 5-lipoxygenase. Arch Pharm (Weinheim). 2020 Feb 7:e1900308.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA