

Product Data Sheet

FG 7142

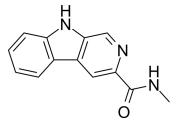
Cat. No.: HY-100991

CAS No.: 78538-74-6

Molecular Formula: C₁₃H₁₁N₃O

Molecular Weight: 225.25

Target: GABA Receptor


Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

4°C 2 years -80°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (443.95 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.4395 mL	22.1976 mL	44.3951 mL
	5 mM	0.8879 mL	4.4395 mL	8.8790 mL
	10 mM	0.4440 mL	2.2198 mL	4.4395 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (11.10 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (11.10 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (11.10 mM); Clear solution

BIOLOGICAL ACTIVITY

Description FG 7142 (ZK 39106; LSU-65), a non-selectively benzodiazepine inverse agonist, has high affinity for the α 1 subunit-containing GABAA receptor (K_i =91 nM). FG 7142 (ZK 39106; LSU-65) also modulates GABA-induced chloride flux at GABAA receptors

expressing the $\alpha 1$ subunit (EC₅₀= 137 nM). FG 7142 (ZK 39106; LSU-65) can increase tyrosine hydroxylation and cause upregulation of β -adrenoceptors in mouse cerebral cortex^[1].

IC₅₀ & Target Ki: 91 nM (GABAA receptor)^[1]

In Vitro	FG-7142 has affinity for those expressing the α subunit, the K _i values are 91 nM; 330 nM; 492 nM and 2.150 μ M for α 1, α 2, α 3 and α 5 subunits, respectively ^[1] . FG-7142 has a high efficacy in modulating GABA-induced chloride flux at GABAA receptors expressing the α 1 subunit (EC ₅₀ = 137 nM) as compared to the other α subunits (EC ₅₀ : α 2= 507 nM, α 3=1.021 μ M , α 5=1.439 μ M) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	FG-7142 (intraperitoneal injection; 15-30 mg/kg) activates mesolimbocortical dopaminergic projections, leading to increases in dopamine in the prefrontal cortex and the nucleus accumbens in rats ^[1] . FG-7142 (intraperitoneal injection; 15 mg/kg) increases tyrosine hydroxylase activity and dopamine turnover in the medial prefrontal cortex and ventral tegmentum in vivo, but effects are not detected in mesolimbic or nigrostriatal areas ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Cottone P, et al. FG 7142 specifically reduces meal size and the rate and regularity of sustained feeding in female rats: evidence that benzodiazepine inverse agonists reduce food palatability. Neuropsychopharmacology. 2007 May;32(5):1069-81. Epub 2006 Nov

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA