Ezatiostat hydrochloride

MedChemExpress

Cat. No.:	HY-13634	
CAS No.:	286942-97-0	
Molecular Formula:	C ₂₇ H ₃₆ ClN ₃ O ₆ S	
Molecular Weight:	566.11	о о б ['] н
Target:	Gutathione S-transferase; Apoptosis	
Pathway:	Metabolic Enzyme/Protease; Apoptosis	нсі
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

Description	Ezatiostat hydrochloride (TER199; TLK199 hydrochloride) is a tripeptide analog of glutathione and is a selective and orally active glutathione S-transferase P1-1 (GSTP1) inhibitor. Ezatiostat hydrochloride leads to JNK activation by inhibiting GSTP1 . Ezatiostat hydrochloride stimulates both lymphocyte production and bone marrow progenitor proliferation. Ezatiostat hydrochloride has the potential for myelodysplastic syndrome (MDS) treatment ^{[1][2]} .	
IC₅₀ & Target	Glutathione S-transferase P1-1 (GSTP1) ^[1]	
In Vitro	Ezatiostat causes dissociation of the enzyme from the jun-N-terminal kinase/c-Jun (JNK/JUN) complex, leading to JNK activation by phosphorylation. The therapeutic action of ezatiostat appears to include both proliferation of normal myeloid progenitors as well as apoptosis of the malignant clone ^[1] . Selection of a resistant clone of an HL60 tumor cell line through chronic exposure to Ezatiostat (TLK199) results in cells with elevated activities of c-Jun NH2 terminal kinase (JNK1) and ERK1/ERK2, and allowes the cells to proliferate under stress conditions that induced high levels of apoptosis in the wild type cells ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	Administration of Ezatiostat (TLK199), stimulates both lymphocyte production and bone marrow progenitor (colony- forming unit-granulocyte macrophage) proliferation, but only in glutathione S-transferase P1-1 (GSTP1 ^{+/+}) and not in GSTP1 ^{-/-} animals ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

CUSTOMER VALIDATION

- Cell Res. 2018 Dec;28(12):1171-1185.
- Adv Sci (Weinh). 2023 Jan 29;e2205262.
- Redox Biol. 2023 May.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

ALIDATION

[1]. Galili N, et al. Prediction of response to therapy with ezatiostat in lower risk myelodysplastic syndrome. J Hematol Oncol. 2012 May 6;5:20

[2]. Ruscoe JE, et al. Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther. 2001 Jul;298(1):339-45.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA