Emrusolmin

Cat. No.:	HY-101855		
CAS No.:	882697-00-9		
Molecular Formula:	C ₁₆ H ₁₁ BrN ₂ O ₂		
Molecular Weight:	343.17		
Target:	Amyloid-β		
Pathway:	Neuronal Signaling		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

®

MedChemExpress

SOLVENT & SOLUBILITY

In Vitro	0	DMSO : ≥ 50 mg/mL (145.70 mM) * "≥" means soluble, but saturation unknown.					
		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	2.9140 mL	14.5700 mL	29.1401 mL		
		5 mM	0.5828 mL	2.9140 mL	5.8280 mL		
		10 mM	0.2914 mL	1.4570 mL	2.9140 mL		
	Please refer to the sol	Please refer to the solubility information to select the appropriate solvent.					
In Vivo		1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.29 mM); Clear solution					
		2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.29 mM); Clear solution					

BIOLOGICAL ACTIVITY				
Description	Emrusolmin (Anle138b), an oligomeric aggregation inhibitor, blocks the formation of pathological aggregates of prion protein (PrPSc) and of α-synuclein (α-syn). Emrusolmin strongly inhibits oligomer accumulation, neuronal degeneration, and disease progression in vivo. Emrusolmin has low toxicity and an excellent oral bioavailability and blood-brain-barrier penetration. Emrusolmin blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology ^{[1][2]} .			
In Vitro	Oligomeric aggregates are presumed to be the key neurotoxic agent. Emrusolmin blocksthe formation of pathological aggregates of prion protein and of α-synuclein, which is deposited in Parkinson's disease and other synucleinopathies such as dementia with Lewy bodies and multiple system atrophy. Emrusolmin strongly inhibits all prion strains tested including BSE-derived and human prions. Emrusolmin shows structure-dependent binding to pathological aggregates and strongly			

HN-N

Br,

Ο

		athological oligomers both for prion protein and α -synuclein ^[1] . ently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	oligomers in vitro and i Emrusolmin (0.6-2 g/kg	Emrusolmin shows structure-dependent binding to pathological aggregates and strongly inhibits formation of pathological oligomers in vitro and in vivo both for prion protein and α-synuclein ^[1] . Emrusolmin (0.6-2 g/kg; p.o.) modulates α⊠synuclein oligomerization ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
	Animal Model:	Two⊠month⊠old PLP⊠hαSyn mice ^[3]	
	Dosage:	0.6 and 2 g/kg	
	Administration:	Oral	
	Result:	Prevented motor deficits and neurodegeneration in the $PLP\xspace Mhamma harmonic matrix and the transformation of transformation of the transformation of transformation of the transformation of trans$	

REFERENCES

[1]. Wagner J, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease. Acta Neuropathol. 2013 Jun;125(6):795-813.

[2]. Martinez Hernandez A, et al. The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology. EMBO Mol Med. 2018;10(1):32-47.

[3]. Heras-Garvin A, et al. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord. 2019;34(2):255-263.

Caution: Product has not been fully validated for medical applications. For research use only.