MCE MedChemExpress

Product Data Sheet

Elesclomol

 Cat. No.:
 HY-12040

 CAS No.:
 488832-69-5

 Molecular Formula:
 $C_{19}H_{20}N_4O_2S_2$

 Molecular Weight:
 400.52

Target: Apoptosis; Reactive Oxygen Species; Cuproptosis

Pathway: Apoptosis; Immunology/Inflammation; Metabolic Enzyme/Protease; NF-кВ

Storage: Powder -20°C 3 years

 $\begin{tabular}{ll} 4 \begin{tabular}{ll} 4 \begin{tabular}{ll} C & 2 \ years \\ In \ solvent & -80 \begin{tabular}{ll} C & 1 \ year \\ \end{tabular}$

-20°C 6 months

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (249.68 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4968 mL	12.4838 mL	24.9677 mL
	5 mM	0.4994 mL	2.4968 mL	4.9935 mL
	10 mM	0.2497 mL	1.2484 mL	2.4968 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 50% PEG300 >> 50% saline Solubility: 5 mg/mL (12.48 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.24 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.24 mM); Clear solution
- 4. Add each solvent one by one: 0.5% CMC/saline water Solubility: 1 mg/mL (2.50 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Elesclomol (STA-4783) is a potent copper ionophore and promotes copper-dependent cell death (cuproptosis). Elesclomol specifically binds ferredoxin 1 (FDX1) $\alpha 2/\alpha 3$ helices and $\beta 5$ strand. Elesclomol inhibits FDX1-mediated Fe-S cluster biosynthesis. Elesclomol is an oxidative stress inducer that induces cancer cell apoptosis. Elesclomol is a reactive oxygen species (ROS) inducer. Elesclomol can be used for Menkes and associated disorders of hereditary copper deficiency research [1][2][3][4].

In Vitro

Elesclomol (STA-4783) binds the FDX1 $\alpha 2/\alpha 3$ helices and $\beta 5$ strand, but does not bind the paralog protein FDX2. Elesclomol-Cu(II) is an FDX1 neo-substrate. FDX1 protein binds and reduces the elesclomol-Cu(II) complex^[1].

Elesclomol-Cu (1:1 ratio) (40 nM) for only 2 hours results in a 15- to 60-fold increase in intracellular copper levels that triggered cell death more than 24 hours later in ABC1 cells^[1].

The addition of copper to elesclomol at a 1:1 molar ratio prior to treatment significantly reduces cell viability when cells are grown in glycolytic (glucose media) conditions^[2].

Elesclomol (200 nM; 18 hours) treatment increases the number of early and late apoptotic cells in HSB2 cells. Elesclomol induces apoptosis in cancer cells through the induction of oxidative stress^[3].

Elesclomol significantly inhibits the cell viability of SK-MEL-5, MCF-7, and HL-60 cells with IC₅₀ values of 110 nM, 24 nM and 9 nM, respectively^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Apoptosis Analysis^[3]

Cell Line:	HSB2 cells	
Concentration:	200 nM	
Incubation Time:	18 hours	
Result:	Increased the number of early and late apoptotic cells.	

In Vivo

Elesclomol (10 mg/kg; subcutaneous injection; every three days from post-natal day 5 to 26 and once weekly until post-natal day 54) treatment ameliorates severe cardiac pathology with a partial reduction in hypertrophy. Cardiac [Cu] increased with Elesclomol treatment from a vehicle knockout level of 34 to 55%^[4].

Elesclomol escorted copper to the mitochondria and increased cytochrome c oxidase levels in the brain. Elesclomol prevents detrimental neurodegenerative changes and improved the survival of the mottled-brindled mouse^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Cardiac Ctr1 knockout mice ^[4]	
Dosage:	10 mg/kg	
Administration:	Subcutaneous injection; every three days from post-natal day 5 to 26 and once weekly until post-natal day 54	
Result:	Ameliorated severe cardiac pathology with a partial reduction in hypertrophy.	

CUSTOMER VALIDATION

- Nat Chem Biol. 2019 Jul;15(7):681-689.
- Cell Rep Med. 2022 Nov 3;100802.
- J Exp Clin Cancer Res. 2023 Jun 6;42(1):142.
- Biomed Pharmacother. 2023 Jan 25;159:114301.
- Cell Biosci. 2022 Dec 29;12(1):209.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Peter Tsvetkov, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022 Mar 18;375(6586):1254-1261.

- [2]. Peter Tsvetkov, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019 Jul;15(7):681-689.
- [3]. Kirshner JR, et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 2008 Aug;7(8):2319-27.
- [4]. Bair JS, et al. Chemistry and biology of deoxynyboquinone, a potent inducer of cancer cell death. J Am Chem Soc. 2010 Apr 21;132(15):5469-7
- [5]. Liam M Guthrie, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020 May 8;368(6491):620-625.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com