

Product Data Sheet

Ecopipam hydrobromide

 Cat. No.:
 HY-110033

 CAS No.:
 2587360-22-1

 Molecular Formula:
 C_{1,9}H_{2,1}BrClNO

Molecular Weight: 394.73

Target: Dopamine Receptor; 5-HT Receptor; Adrenergic Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: -20°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

BIOLOGICAL ACTIVITY

Description Ecopipam (SCH 39166) hydrobromide is a potent, selective and orally active antagonist of dopamine D1/D5 receptor, with K_i s of 1.2 nM and 2.0 nM, respectively. Ecopipam hydrobromide shows more than 40-flod selectivity over D2, D4, 5-HT, and α2a

receptor (K_i =0.98, 5.52, 0.08, and 0.73 μ M, respectively). Ecopipam hydrobromide can be used for the research of

schizophrenia and obesity^[1].

 IC_{50} & Target D_1 Receptor D_5 Receptor D_2 Receptor D_4 Receptor1.2 nM (Ki)2.0 nM (Ki)980 nM (Ki)5520 nM (Ki)

5-HT Receptor Alpha-2A adrenergic

80 nM (Ki) receptor 731 nM (Ki)

In Vitro Ecopipam (2 μM) hydrobromide completely abolishes the proconvulsive effect of Dopamine (10 μM) in isolated

corticohippocampal formation^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo Ecopipam (10, mg/kg, oral administration) antagonizes Apomorphine-induced stereotypy in rats^[4].

Ecopipam (5 and 10 μ M, perfusion, 1 μ L/min) reversibly and dose-dependently decreases acetylcholine release in the rat

striatum^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male young adult Long-Evans rats were injected with Nicotine ^[3]
Dosage:	0.003, 0.01, 0.03, 0.1, 0.3 mg/kg
Administration:	A single s.c. 20 min before Nicotine (0.1 mg/kg)
Result:	Dose-dependently reduced pressing on both active and inactive levers.

REFERENCES

[1]. R E Chipkin, et al. Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther. 1988

Dec;247(3):1093-102.

- [2]. E Acquas, et al. Local application of SCH 39166 reversibly and dose-dependently decreases acetylcholine release in the rat striatum. Eur J Pharmacol. 1999 Nov 3;383(3):275-9.
- [3]. Wu WL, et al. Dopamine D1/D5 receptor antagonists with improved pharmacokinetics: design, synthesis, and biological evaluation of phenol bioisosteric analogues of benzazepine D1/D5 antagonists. J Med Chem. 2005 Feb 10;48(3):680-93.
- [4]. Sharopov S, et al. Dopaminergic modulation of low-Mg² \(\text{\text{\text{M}}}\) -induced epileptiform activity in the intact hippocampus of the newborn mouse in vitro. J Neurosci Res. 2012 Oct;90(10):2020-33.
- [5]. Satanove DJ, et al. Nicotine-induced enhancement of a sensory reinforcer in adult rats: antagonist pretreatment effects. Psychopharmacology (Berl). 2021 Feb;238(2):475-486.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA