Proteins

EP4 receptor antagonist 1

Cat. No.: HY-133123 CAS No.: 2287259-07-6 Molecular Formula: $C_{23}H_{21}F_3N_4O_3$ Molecular Weight: 458.43

Target: Prostaglandin Receptor

Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (218.14 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.1814 mL	10.9068 mL	21.8136 mL
	5 mM	0.4363 mL	2.1814 mL	4.3627 mL
	10 mM	0.2181 mL	1.0907 mL	2.1814 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

 ${\sf EP4}\ receptor\ antagonist\ 1\ is\ a\ highly\ potent\ and\ selective\ competitive\ prostanoid\ {\sf EP4}\ receptor\ antagonist\ for\ cancer$ Description immunotherapy. EP4 receptor antagonist 1 inhibits human and mouse EP4 receptor with IC50s of 6.1 nM and 16.2 nM, respectively. $IC_{50}s > 10 \mu M$ for human EP1, EP2, and EP3 receptors [1].

IC50: 6.1 nM (human EP4 receptor), 16.2 nM (mouse EP4 receptor)^[1] IC₅₀ & Target

In Vitro

The antagonistic effect of EP4 receptor antagonist 1 (Compounds 59) on human EP4 in calcium flux assay with an IC $_{50}$ of 6.1 ± 0.2 nM in CHO- $G_{\alpha16}$ cells overexpressing human EP4 receptor. The antagonistic effect of EP4 receptor antagonist 1 on human EP4 in calcium flux assay with an IC₅₀ of 16.2±1.7 nM in CHO-G_{α16} cells overexpressing mouse EP4 receptor^[1]. EP4 receptor antagonist 1 dose dependently inhibits PGE2-stimulated cAMP accumulation in HEK293-EP4 cells with an IC₅₀ of 18.7 ± 0.6 nM. EP4 receptor antagonist 1 dose-dependently inhibits the activity of the CRE reporter in HEK293 cells with an IC₅₀ of 5.2±0.4 nM.EP4 receptor antagonist 1 dose-dependently inhibits PGE2-stimulated β-arrestin recruitment in HEK293-EP4 cells with an IC₅₀ of 0.4 \pm 0.1 nM^[1].

EP4 receptor antagonist 1 (1 nM-10 μM) reverses PGE2-induced ERK phosphorylation in a concentration-dependent manner [1]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis ^[1]		
Cell Line:	CHO-EP4 cells	
Concentration:	1 nM, 100 nM, 10 μM	
Incubation Time:	Pretreated for 20 min and then subjected to 30 nM PGE2 simulation for 10 min.	
Result:	Reversed PGE2-induced ERK phosphorylation in a concentration-dependent manner.	

In Vivo

EP4 receptor antagonist 1 (16, 50, and 150 mg/kg; orally; once daily for two weeks) causes significant inhibition of tumor growth in BALB/c female mice. No significant body weight loss is found in any mouse cohorts. EP4 receptor antagonist 1 is well tolerated in mice at the tested dosage [1].

EP4 receptor antagonist 1 (1 mg/kg; intravenously) demonstrates moderate clearance (CL=1.7 L/h/kg) in mice with a corresponding favorable half-life ($t_{1/2}$) of 4.1 h. EP4 receptor antagonist 1 (5 mg/kg; orally) exhibits good bioavailability (F=48.0%) in mice with a corresponding favorable half-life ($t_{1/2}$) of 4.7 h^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	BALB/c female mice (6-week-old) bearing CT26 colon cancer model $^{[1]}$
Dosage:	16, 50, and 150 mg/kg
Administration:	Orally; once daily for two weeks
Result:	Tumor growth inhibition (TGI) was 24.6% at 16 mg/ kg, 54.7% at 50 mg/kg, and 63.8% at 150 mg/kg.

Animal Model:	BALB/c female mice ^[1]	
Dosage:	1 mg/kg and 5 mg/kg (Pharmacokinetic Analysis)	
Administration:	Intravenously or orally at a dose of 1 mg/kg (5 mL/kg) and 5 mg/kg (10 mL/kg),respectively.	
Result:	Demonstrated moderate clearance (CL=1.7 L/h/kg) in mice with a corresponding favorable half-life ($t_{1/2}$) of 4.1 h at a dose of 1 mg/kg (intravenously). Exhibited good bioavailability (F=48.0%) in mice with a corresponding favorable half-life ($t_{1/2}$) of 4.7 h at a dose of 5 mg/kg (orally).	

REFERENCES

[1]. Yang JJ, et al. Discovery and Characterization of 1H-1,2,3-Triazole Derivatives as Novel Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem. 2020 Jan 23;63(2):569-590.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA