EB-47 dihydrochloride

Cat. No.: HY-108631 CAS No.: 1190332-25-2 Molecular Formula: $C_{24}H_{29}Cl_2N_9O_6$ Molecular Weight: 610.45

PARP Target:

Pathway: Cell Cycle/DNA Damage; Epigenetics Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 62.5 mg/mL (102.38 mM; Need ultrasonic) H₂O: 33.33 mg/mL (54.60 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.6381 mL	8.1907 mL	16.3814 mL
	5 mM	0.3276 mL	1.6381 mL	3.2763 mL
	10 mM	0.1638 mL	0.8191 mL	1.6381 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 2.94 mg/mL (4.82 mM); Clear solution; Need ultrasonic and warming and heat to 60°C
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.10 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.10 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.10 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	EB-47 dihydrochloride, a potent and selective PARP-1/ARTD-1 inhibitor with an IC_{50} value of 45 nM, shows modest potency against ARTD5 with an IC_{50} value of 410 nM. EB-47 mimics the substrate NAD ⁺ and extends from the nicotinamide to the adenosine subsite ^[1] .
In Vitro	EB-47 dihydrochloride shows inhibition in excess of 50% with CdPARP, and it is able to inhibit CdPARP and HsPARP with IC values of 0.86 and 1.0 μ M, respectively [1].

	MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	EB-47 dihydrochloride (2 μ M; 5 days) decreases the number of embryo implantation sites and blastocysts at day 5. PARP1 participates in the process of embryo implantation ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nucleic Acids Res. 2023 Jun 16;gkad515.
- Research Square Preprint. 2022 Feb.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES

- $[1]. \ Haik arainen\ T, et\ al.\ Evaluation\ and\ Structural\ Basis\ for\ the\ Inhibition\ of\ Tankyrases\ by\ PARP\ Inhibitors. ACS\ Med\ Chem\ Lett.\ 2013\ Nov\ 20; 5(1):18-22.$
- [2]. García-Saura AG, et al. Comparative inhibitory profile and distribution of bacterial PARPs, using Clostridioides difficile CD160 PARP as a model. Sci Rep. 2018 May 23;8(1):8056.
- [3]. Jagtap PG, et al. The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg Med Chem Lett. 2004 Jan 5;14(1):81-5.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA