Diphenyleneiodonium chloride

Cat. No.:	HY-100965	
CAS No.:	4673-26-1	Cl-
Molecular Formula:	C ₁₂ H ₈ ClI	ı+
Molecular Weight:	314.55	
Target:	TRP Channel; NADPH Oxidase; Reactive Oxygen Species	
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic Enzyme/Protease; Immunology/Inflammation; NF-кВ	
Storage:	4°C, sealed storage, away from moisture * In solvent : -80°C, 1 years; -20°C, 6 months (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

Preparing Stock Solutions	Mass			
	Solvent Concentration	1 mg	5 mg	10 mg
	1 mM	3.1791 mL	15.8957 mL	31.7915 m
	5 mM	0.6358 mL	3.1791 mL	6.3583 mL
	10 mM	0.3179 mL	1.5896 mL	3.1791 ml

BIOLOGICAL ACTIVITY		
Description	Diphenyleneiodonium chloride is a NADPH oxidase (NOX) inhibitor and also functions as a TRPA1 activator with an EC ₅₀ of 1 to 3 μM. Diphenyleneiodonium chloride selectively inhibits intracellular reactive oxygen species.	
IC ₅₀ & Target	NOX ^[1] EC50: 1 to 3 μM (TRPA1) ^[1]	
In Vitro	Diphenyleneiodonium chloride is a NADPH oxidase (NOX) inhibitor and also functions as a TRPA1 activator with an EC ₅₀ of 1 to 3 μ M. Application of Diphenyleneiodonium chloride to HEK-TRPA1 cells at a concentration ranges of 0.03 to 10 μ M effectively induces a Ca ²⁺ response. However, Diphenyleneiodonium chloride fails to evoke a Ca ²⁺ response in control HEK cells, even at a relatively high dose of 10 μ M ^[1] . When Diphenyleneiodonium chloride is included in the co-cultures, lipopolysaccharide (LPS)-induced preOL apoptosis is significantly inhibited. Treatment with Diphenyleneiodonium chloride is found to significantly attenuate the LPS-induced O ₂ ⁻ production by 2.0-fold, reducing it to within 27% of the controls ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	Intraplantar injection of 2 mM Diphenyleneiodonium chloride to the hindpaw causes licking or biting behavior ^[1] .	

Diphenyleneiodonium chloride treatment immediately or 24 h after lipopolysaccharide (LPS) injection significantly attenuates the LPS-induced loss of O4 positive cells. Treatment with Diphenyleneiodonium chloride either immediately or 24 h after LPS injection significantly ameliorates the LPS-induced disorganization of the white matter nerve fibers. However, treatment with DPI 48 h after LPS injection does not appear to correct the LPS-induced white matter damage. DPI treatment either immediately or 24 h after LPS injection significantly reduces the accumulation of both gp91phox and p67phox in the membrane fraction^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

ΡΡΟΤΟΓΟΙ	·
TROTOCOL	
Cell Assay ^[2]	Purified microglia and preOLs are co-cultured using a Transwell culture system. Co-cultured cells are divided into three groups: control, lipopolysaccharide (LPS)-activated, and LPS plus Diphenyleneiodonium chloride. Microglia are cultured in Transwells over established preOL layers and exposed to either LPS (100 ng/mL), LPS+Diphenyleneiodonium chloride (10 μ M) or untreated. The medium supernatants and cellular protein fractions from the co-cultures are then collected for further analysis after 48 h incubation ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Animal Administration ^[1]	The ddy mice (6 to 7 wk of age) are individually placed in transparent cages for 30 min before experiments. An intraplantar injection of 10 µL Diphenyleneiodonium chloride (2 mM, solvent: Kolliphor EL with 20% DMSO) is then injected into the right hindpaw with or without intraperitoneal administration with HC030031 (300 mg/kg at 0.5 h prior to injection of Diphenyleneiodonium chloride; solvent: saline with 0.5% methyl cellulose). The time spent licking or biting the injected paw is recorded for 45 min after injection ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cancer Cell. 2021 Mar 8;39(3):423-437.e7.
- Adv Healthc Mater. 2021 Dec 3;e2102439.
- Sci Total Environ. 2023 Jul 26;165821.
- Biomed Pharmacother. 2020 Jan;121:109615.
- J Transl Med. 2023 Mar 25;21(1):218.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Suzuki H, et al. The NADPH oxidase inhibitor diphenyleneiodonium activates the human TRPA1 nociceptor. Am J Physiol Cell Physiol. 2014 Aug 15;307(4):C384-94.

[2]. He YF, et al. Diphenyleneiodonium protects preoligodendrocytes against endotoxin-activated microglial NADPH oxidase-generated peroxynitrite in a neonatal rat model of periventricular leukomalacia. Brain Res. 2013 Jan 25;1492:108-21.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA