Product Data Sheet

Dihydrorhodamine 123

 Cat. No.:
 HY-101894

 CAS No.:
 109244-58-8

 Molecular Formula:
 $C_{21}H_{18}N_2O_3$

 Molecular Weight:
 346.38

Target: Fluorescent Dye

Pathway: Others

Storage: -20°C, protect from light

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (288.70 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8870 mL	14.4350 mL	28.8700 mL
	5 mM	0.5774 mL	2.8870 mL	5.7740 mL
	10 mM	0.2887 mL	1.4435 mL	2.8870 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (7.22 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description Dihydrorhodamine 123 (DHR 123) is a fluorescent probe (λ_{ex} =488 nm, λ_{em} =525 nm)^[1].

In Vitro

In the presence of 10 μ M Dihydrorhodamine 123 (DHR 123) the stimulation of the neutrophil NADPH oxidase by the addition of 50 nM phorbol 12-myristate 13-acetat (PMA) resultes in an increase in the rate of rhodamine generation. The fluorescent intensity of the cells, in the presence of 10 μ M Dihydrorhodamine 123, increases with time following the addition of 50 nM PMA. In the presence of 10 μ M Dihydrorhodamine 123, induced HL60 cells show a sustained increase in fluorescence following the addition of 50 nM PMA $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

The HL60 cells are incubated at 6×10^6 cells/mL in Krebs-Ringer buffer at 37° C containing 10 μ M Dihydrorhodamine 123

(DHR). The generation of O_2^- is initiated by the addition of 50 nM phorbol 12-myristate 13-acetat (PMA) and the progress of the generation of rhodamine 123 is monitored in 50- μ L aliquots (3×10⁵ cells) diluted tenfold before analysis. The uninduced HL60 cells are loaded with 5 μ M carboxy SNARF-1 AM acetate (SNARF-AM) in the Na⁺ medium for 10 min at 37°C and washed by centrifugation and resuspension to remove unhydrolysed SNARF ester^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Part Fibre Toxicol. 2022 Mar 29;19(1):24.
- Free Radic Biol Med. 2023 Mar 3;S0891-5849(23)00100-4.
- Commun Biol. 2023 Mar 11;6(1):259.
- J Mol Cell Cardiol. 2021 Jul 2;S0022-2828(21)00135-8.
- Mol Carcinog. 2023 Sep 26.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Lydia M. Henderson et al. Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur.J.Biochem. 217, 973-980.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com