Proteins

Product Data Sheet

Diclofenac potassium

Cat. No.: HY-15038 CAS No.: 15307-81-0 Molecular Formula: $C_{14}H_{10}Cl_2KNO_2$

Molecular Weight: 334.24

Target: Apoptosis; COX

Pathway: Apoptosis; Immunology/Inflammation 4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro DMSO: 100 mg/mL (299.19 mM; Need ultrasonic)

H₂O: 14.29 mg/mL (42.75 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9919 mL	14.9593 mL	29.9186 mL
	5 mM	0.5984 mL	2.9919 mL	5.9837 mL
	10 mM	0.2992 mL	1.4959 mL	2.9919 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.48 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.48 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.48 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Diclofenac potassium is a potent and nonselective anti-inflammatory agent, acts as a COX inhibitor, with IC50s of 4 and 1.3 nM for human COX-1 and COX-2 in CHO cells^[1], and 5.1 and 0.84 μ M for ovine COX-1 and COX-2, respectively^[2]. Diclofenac potassium induces apoptosis of neural stem cells (NSCs) via the activation of the caspase cascade^[3].

IC ₅₀ & Target	Human COX-2	Human COX-1	Ovine COX-2	Ovine COX-1
	1.3 nM (IC ₅₀ , in CHO cells)	4 nM (IC ₅₀ , in CHO cells)	0.84 nM (IC ₅₀)	5.1 nM (IC ₅₀)

In Vitro Diclofenac effectively blocks COX-1 mediated prostanoid production from U937 cell microsomes, with an IC₅₀ of 7±3 nM^[1]. Diclofenac (1-60 μ M; 1 day) induces neural stem cells (NSCs) death in a concentration-dependent manner^[3]. Diclofenac (10-60 μ M; 6 hours) increases the expression of cleaved (activated) caspase-3^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[3]

Cell Line:	Neural stem cells (NSCs)	
Concentration:	1, 3, 10, 30, 60 μΜ	
Incubation Time:	1 day	
Result:	Induction of cell death was concentration-dependent and the effect was not saturated at a concentration of up to 60 μM .	

Western Blot Analysis^[3]

Cell Line:	Neural stem cells (NSCs)
Concentration:	10, 30 or 60 μM
Incubation Time:	6 hours
Result:	The activation of caspase-3 was increased in a concentration-dependent manner.

In Vivo

Diclofenac (3 mg/kg, b.i.d., for 5 days) significantly increases faecal 51 Cr excretion in rats, and such effect is also observed in squirrel monkeys after administrated of 1 mg/kg twice daily for 4 days $^{[1]}$.

Diclofenac (10 mg/kg; administered via oral route just prior to induction of inflammation) shows in vivo anti-inflammatory activity in Wistar rats $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague-Dawley rats (150±200 g) ^[1]	
n		
Dosage:	3 mg/kg	
Administration:	Oral administration, b.i.d., for 5 days	
Result:	Resulted in a significant increase in faecal ⁵¹ Cr excretion.	
Animal Model:	Wistar rats (150-175 g) bearing Formalin-induced rat foot paw edema model ^[2]	
Dosage:	10 mg/kg	
Administration:	Administered via oral route just prior to induction of inflammation	
Result:	Showed in vivo anti-inflammatory activity (% edema inhibition=29.2, 1 h; 22.2, 3 h; 20, 6 h).	

CUSTOMER VALIDATION

- J Hazard Mater. 2015 May 30;289:18-27.
- Chemosphere. 2019 Jun;225:378-387.
- Int J Mol Sci. 2022, 23(20), 12066.
- Chem-Biol Interact. 2021, 109425.

• J Phys Chem Solids. 2017 October;109:117-123.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES

- [1]. Chiho Kudo, et al. Diclofenac Inhibits Proliferation and Differentiation of Neural Stem Cells. Biochem Pharmacol. 2003 Jul 15;66(2):289-95.
- [2]. Riendeau D, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol. 1997 May;121(1):105-17.
- [3]. Labib MB, et al. Design, synthesis of novel isoindoline hybrids as COX-2 inhibitors: Anti-inflammatory, analgesic activities and docking study. Bioorg Chem. 2018 Oct;80:70-80.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com