Proteins

Desirudin

Cat. No.: HY-109549 CAS No.: 120993-53-5 Target: Thrombin

Pathway: Metabolic Enzyme/Protease

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Desirudin

Product Data Sheet

BIOLOGICAL ACTIVITY

Description	Desirudin (CGP 39393) is a thrombin inhibitor. Desirudin can inhibit the formation of blood clots and venous stasis thrombosis, which is used for the research of thrombocytopenia or platelet dysfunction $^{[1][2]}$.			
IC ₅₀ & Target	ED50: 0.01 mg/kg (i.v.) and 0.45 mg/kg (s.c.) ^[2] .			
In Vivo	Desirudin (CGP 39393, 0.75-3.0 mg/kg, a bolus plus infusion administration, dogs model of cardiopulmonary bypass) is effective in Inhibiting clot formation ^[1] . Desirudin (0.01-1 mg/kg, Intravenous injections and subcutaneous injection, rat shunt model) inhibits thrombus development with ED ₅₀ values of 0.3 mg/kg (i.v.) and 1.0 mg/kg (s.c.), and inhibits venous stasis thrombosis with ED ₅₀ values of 0.01 mg/kg (i.v.) and 0.45 mg/kg (s.c.) ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	Male mongrel dogs model of cardiopulmonary bypass ^[1]		
	Dosage:	1.0 mg/kg + 0.75 mg/kg/h, 1.0 mg/kg + 1.50 mg/kg/h, 1.0 mg/kg + 2.25 mg/kg/h, 1.0 mg/kg + 3.0 mg/kg/h.		
	Administration:	Administered as a bolus plus infusion		
	Result:	Inhibited clot formation with no adverse hemodynamic or hematologic effects.		
	Animal Model:	Rat shunt model of thrombus formation on a cotton-thread $^{[2]}$		
	Dosage:	0.01-1 mg/kg approximately		
	Administration:	Intravenous injections, subcutaneous injection		
	Result:	Inhibited thrombus development with ED $_{50}$ values of 0.3 mg/kg (i.v.) and 1.0 mg/kg (s.c.). Inhibited venous stasis thrombosis with ED $_{50}$ values of 0.01 mg/kg (i.v.) and 0.45 mg/kg (s.c.).		

REFERENCES

[1]. J M Walenga, et al. Evaluation of CGP 39393 as the Anticoagulant in Cardiopulmonary Bypass Operation in a Dog Model. Ann Thorac Surg. 1994 Dec;58(6):1685-9. [2]. M D Talbot, et al. Recombinant desulphatohirudin (CGP 39393) anticoagulant and antithrombotic properties in vivo. Thromb Haemost. 1989 Feb 28;61(1):77-80.					
[2]. M D Talbot, et al. Recombinant desulphatonirudin (C	.GP 39393) anticoagulant and antithr	ombotic properties in vivo. Thromb Haemost.	1989 Feb 28;61(1):77-80.		
Caution: Product ha	s not been fully validated for med	dical applications. For research use only			
Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress.com			
Addres	s: 1 Deer Park Dr, Suite Q, Monmo	uth Junction, NJ 08852, USA			

Page 2 of 2 www.MedChemExpress.com