Product Data Sheet

Deoxynyboquinone

Cat. No.: HY-108992 CAS No.: 96748-86-6 Molecular Formula: $C_{15}H_{12}N_2O_4$ Molecular Weight: 284.27

Target: Apoptosis; Reactive Oxygen Species

In solvent

Pathway: Apoptosis; Immunology/Inflammation; Metabolic Enzyme/Protease; NF-κΒ

Storage: Powder -20°C 3 years

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 4 mg/mL (14.07 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.5178 mL	17.5889 mL	35.1778 mL
	5 mM	0.7036 mL	3.5178 mL	7.0356 mL
	10 mM	0.3518 mL	1.7589 mL	3.5178 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Deoxynyboquinone, an excellent NQO1 substrate, is a potent antineoplastic agent. Deoxynyboquinone induces apoptosis in cancer cell lines. Deoxynyboquinone kills cancer cells through oxidative stress and reactive oxygen species (ROS) formation [1][2][3].
IC ₅₀ & Target	$Apoptosis^{[2][3]}; ROS^{[4]}$
In Vitro	Deoxynyboquinone (DNQ; 72h) potently induces the death of cancer cells (SK-MEL-5, MCF-7, HL-60, HL-60/ADR) in culture, with IC $_{50}$ values between 16 and 210 nM $^{[2]}$. Deoxynyboquinone is still able to induce cancer cell death under hypoxic conditions (HeLa cell; IC $_{50}$: 5.1 μ M) $^{[2]}$. Deoxynyboquinone (group B1; 0.5 μ M; 3, 6, 24 hours) potently induces apoptosis in cancer cell lines (MCF-7, HL-60) through cytochrome c release $^{[3]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Deoxynyboquinone (2.5, 5, and 10 mg/kg; every other day for 5 injections; i.v. for day 2-18) shows antitumor efficacy confirmed by overall survival (at 5 mg/kg), at a 6-fold lower dose than β -lapachone (30 mg/kg) ^[4] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Elizabeth I Parkinson, et al. Deoxynyboquinones as NQO1-Activated Cancer Therapeutics. Acc Chem Res. 2015 Oct 20;48(10):2715-23.
- [2]. Joseph S Bair, et al. Chemistry and biology of deoxynyboquinone, a potent inducer of cancer cell death. J Am Chem Soc. 2010 Apr 21;132(15):5469-78.
- [3]. Tudor G, et,al. Cytotoxicity and apoptosis of benzoquinones: redox cycling, cytochrome c release, and BAD protein expression. Biochem Pharmacol. 2003;65(7):1061-1075.
- [4]. Huang X, et al. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res. 2012 Jun 15;72(12):3038-47.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA