Screening Libraries

Product Data Sheet

Dantrolene sodium hemiheptahydrate

Cat. No.: HY-12542A CAS No.: 24868-20-0 Molecular Formula: C₁₄H₁₆N₄NaO_{8.5}

Molecular Weight:

Target: Calcium Channel; Autophagy

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Autophagy

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: ≥ 33 mg/mL (82.71 mM)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5063 mL	12.5313 mL	25.0627 mL
	5 mM	0.5013 mL	2.5063 mL	5.0125 mL
	10 mM	0.2506 mL	1.2531 mL	2.5063 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.5 mg/mL (1.25 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 0.5 mg/mL (1.25 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Dantrolene sodium hemiheptahydrate is an orally active, non-competitive glutathione reductase inhibitor with a Ki of 111.6 μM and an IC₅₀ of 52.3 μM. Dantrolene sodium hemiheptahydrate is a ryanodine receptor (RyR) antagonist and Ca2+ signaling stabilizer. Dantrolene sodium hemiheptahydrate is a direct-acting skeletal muscle relaxant. Dantrolene sodium hemiheptahydrate can be used for the research of muscle spasticity, malignant hyperthermia, Huntington's disease and other neuroleptic malignant syndrome^{[1][2][3]}.

In Vitro

Dantrolene (60 μM; at 1 and 3 days) sodium hemiheptahydrate significantly inhibits ACTA2 expression and upregulats RUNX2 expression in paVICs^[2].

Dantrolene (60 μM; overnight pretreatment) sodium hemiheptahydrate inhibits LPC-induced calcium flux in porcine aortic

valve interstitial cells^[2].

Dantrolene (10, 30, 60 μ M) sodium hemiheptahydrate inhibits calcific nodule formation of paVICs due to 10 μ M lysophosphatidylcholine (LPC)^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

RT-PCR^[2]

Cell Line:	Porcine aortic valvular interstitial cells (paVICs)	
Concentration:	60 μΜ	
Incubation Time:	At 1 and 3 days	
Result:	Significantly inhibited ACTA2 expression and upregulated RUNX2 expression.	

In Vivo

Dantrolene (5 mg/kg; fed orally twice per week) sodium hemiheptahydrate improves performance in the beam-walking and gait-walking assay^[3].

Dantrolene (10 mg/kg; IP; three days per week; for 40-60 days) sodium hemiheptahydrate significantly improves gait, reduces LC3-II levels, improves mitochondrial ATP production and reduced inflammation in the brain. Dantrolene sodium hemiheptahydrate partially reduces autophagy and the expression of CALM (calmodulin) in the brain of neuronopathic Gaucher disease mice^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	YAC128 transgenic mice (FVBN/NJ background strain) and WT mice ^[3]	
Dosage:	5 mg/kg	
Administration:	Fed orally twice per week from 2 to 11.5 months of age	
Result:	Resulted in significantly improved performance in the beam-walking and gait-walking assays. Significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates.	

CUSTOMER VALIDATION

- Cell Res. 2022 Mar;32(3):288-301.
- Front Immunol. 2021 Jul 7;12:688674.
- J Anim Sci Biotechnol. 2022 Feb 11;13(1):9.
- Anim Nutr. 28 September 2021.
- J Cell Commun Signal. 2023 Sep 13.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Murat Sentürk, et al. Dantrolene inhibits human erythrocyte glutathione reductase. Biol Pharm Bull. 2008 Nov;31(11):2036-9.
- [2]. Christopher B Sylvester, et al. Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation via blockade of the ryanodine receptor. Front Cardiovasc Med. 2023 Mar 30:10:1112965.
- [3]. Xi Chen, et al. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Mol Neurodegener. 2011 Nov 25;6:81.

Page 3 of 3 www.MedChemExpress.com