

Danshenol A

Cat. No.: HY-122917 CAS No.: 189308-08-5 Molecular Formula: $C_{21}H_{20}O_4$ Molecular Weight: 336.38

Target: Aldose Reductase; Reactive Oxygen Species

Pathway: Metabolic Enzyme/Protease; Immunology/Inflammation; NF-κB

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description Danshenol A, an abietane-type diterpenoid, is an aldose reductase (AR) inhibitor with an IC₅₀ of 0.1 μM. Danshenol A can protect endothelial cells from oxidative stress by directly scavenging ROS. Danshenol A has anti-inflammatory and

antitumor properties. Danshenol A can be used for atherosclerosis research^{[1][2][3][4]}.

IC₅₀ & Target

IC50: 0.1 µM (Aldose reductase)[3]

In Vitro

Danshenol A (10 nM; pretreatment for 1 h) alone showed no effect on the ICAM-1 expression at both mRNA and protein levels. TNF-α-induced ICAM-1 expression and subsequent adhesion of monocytes, as well as elevated reactive oxygen species (ROS) generation and NOX4 expression are all significantly reversed by Danshenol ADanshenol A inhibits TNF-αinduced ICAM-1 expression and subsequent monocyte adhesion to endothelial cells through the NOX4-dependent IKKβ/NFκB pathway^[1].

Danshenol A (1, 3, and 10 μM; pretreated for 35 min) restores apoptosis of cardiomyocytes induced by angiotensin II. Besides, Danshenol A inhibits mitochondrial redox signaling pathways in cardiomyocytes^[2].

Danshenol A shows inhibited growth of K562 (IC $_{50}$ = 0.53 μ g/mL), T-24 (IC $_{50}$ = 7.94 μ g/mL), QGY (IC $_{50}$ = 4.65 μ g/mL) and Me180 (IC₅₀ = 6.89 μ g/mL) cell lines^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	HUVEC cells
Concentration:	10 nM
Incubation Time:	Pretreatment for 1 h
Result:	Showed no effect on the ICAM-1 expression at both mRNA and protein levels.

In Vivo

Danshenol A (0.3-3 mg/kg; p.o; daily; for 12 weeks) ameliorates blood pressure, cardiac injury, and myocardial collagen volume and improved cardiac function in SHR rats. Danshenol A repaires the structure/function of the mitochondria, alleviated oxidative stress in the myocardium^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model: Forty male spontaneously hypertensive rats (SHR) and eight male Wistar-Kyoto (WKY) r) rats
--	--------

	at the age of 16 weeks ^[2]
Dosage:	0.3 mg/kg, 1 mg/kg, 3 mg/kg
Administration:	Orally administration; daily; for 12 weeks
Result:	Ameliorated blood pressure, cardiac injury, and myocardial collagen volume and improved cardiac function.

REFERENCES

- [1]. Wenwen Zhao, et al. Danshenol A inhibits TNF- α -induced expression of intercellular adhesion molecule-1 (ICAM-1) mediated by NOX4 in endothelial cells. Sci Rep. 2017 Oct 11;7(1):12953.
- [2]. Kai Chen, et al. Danshenol A Alleviates Hypertension-Induced Cardiac Remodeling by Ameliorating Mitochondrial Dysfunction and Suppressing Reactive Oxygen Species Production. Oxid Med Cell Longev. 2019 Sep 11;2019:2580409.
- [3]. Y Tezuka, et al. Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge. Chem Pharm Bull (Tokyo). 1997 Aug; 45(8):1306-11.
- [4]. Gang Xu, et al. Two new abietane diterpenoids from Salvia yunnanensis. Planta Med. 2006 Jan;72(1):84-6.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com\\$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA