Proteins

DOTA-NHS-ester

Cat. No.: HY-128890 CAS No.: 170908-81-3 Molecular Formula: $C_{20}H_{31}N_5O_{10}$ 501.49 Molecular Weight: **ADC Linker** Target:

Pathway: Antibody-drug Conjugate/ADC Related Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (99.70 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9941 mL	9.9703 mL	19.9406 mL
	5 mM	0.3988 mL	1.9941 mL	3.9881 mL
	10 mM	0.1994 mL	0.9970 mL	1.9941 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.99 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.99 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.99 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

DOTA-NHS-ester is a linker for affibody molecules and is applied in small animals PET, SPECT, and CT. DOTA-NHS-ester can be used to label radiotherapeutic agents or imaging probes for the detection of tumors [1].

In Vitro

DOTA-NHS-ester can be used to modify human serum albumin (HSA) to produce DOTA-HSA. And DOTA-HSA is furtherly modified by Sulfo-SMCC (HY-D0975) to obtain DOTA-HSA-SMCC. DOTA-HSA-SMCC is conjugated to ZHER2:342 and the final product is DOTA-HSA-Z_{HER2:342}^[1].

In a cell uptake assay, DOTA-HSA-Z_{HER2:342} is labeled by ⁶⁴Cu, ⁶⁴Cu-DOTA-HSA-Z_{HER2:342} (0.5-2 hours) slowly accumulates in the SKOV3 cells and reaches 0.71% of the applied activity at 0.5 h and the uptake increased to 1.58% at $2 h^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

In a microPET images of a mouse bearing SKOV3 tumor, ⁶⁴Cu-DOTA-HSA-Z_{HER2:342} is injected to the mouse tail. microPET images of a mouse bearing SKOV3 tumor at 1, 4, 24 and 48 h after tail vein injection.

The SKOV3 tumor is visible with a low tumor-to-background contrast at 1 h post-injection (p.i.), but with a very good tumor-to-background contrast at 4 and 24 h p.i.

Quantification analysis reveals that the SKOV3 tumor uptake values increases with time and are found to be 5.63%, 9.98%, 14.34% and 14.12% ID/g at 1, 4, 24, and 48 h, respectively^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Adv Nanobiomed Res. 2023 Sep 3.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Hoppmann S, et al. Radiolabeled affibody-albumin bioconjugates for HER2-positive cancer targeting. Bioconjug Chem. 2011 Mar 16;22(3):413-2

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA