DC10SMe

Cat. No.:	HY-135122	
CAS No.:	2649727-40-0	
Molecular Formula:	$C_{35}H_{29}N_5O_4S_2$	
Molecular Weight:	647.77	
Target:	ADC Cytotoxin; DNA Alkylator/Crosslinker	
Pathway:	Antibody-drug Conjugate/ADC Related; Cell Cycle/DNA Damage	
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

BIOLOGICAL ACTIVITY		
Description	DC10SMe is a DNA alkylator, can be used in the synthesis of antibody-drug conjugate (ADC). DC10SMe exhibits IC ₅₀ s of 15 pM, 12 pM, and 12 pM for Ramos, Namalwa, and HL60/s cancer cells, respectively ^[1] .	
IC ₅₀ & Target	Duocarmycins	
In Vitro	DC10SMe is a active cyclopropyl form. DC10SMe undergoes N-3 alkylation with an adenine residue and thus form a DNA adduct ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
	here has not independently commission and contract in the detailed of the set interview of the office of the set of the s	

REFERENCES

[1]. Zhao RY, et al. Synthesis and biological evaluation of antibody conjugates of phosphate prodrugs of cytotoxic DNA alkylators for the targeted treatment of cancer. J Med Chem. 2012 Jan 26;55(2):766-82.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Product Data Sheet

RedChemExpress