Screening Libraries

D75-4590

Cat. No.: HY-134655 CAS No.: 384376-42-5 Molecular Formula: $C_{21}^{}H_{27}^{}N_{5}^{}$ Molecular Weight: 349.47 Target: Fungal

Pathway: Anti-infection

Storage: Powder -20°C 3 years

2 years

-80°C 6 months In solvent

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (143.07 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8615 mL	14.3074 mL	28.6148 mL
	5 mM	0.5723 mL	2.8615 mL	5.7230 mL
	10 mM	0.2861 mL	1.4307 mL	2.8615 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.25 mg/mL (3.58 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	D75-4590, a pyridobenzimidazole derivative and a β -1,6-glucan synthesis inhibitor, possesses antifungal activity ^[1] .
In Vitro	D75-4590 has activities against a variety of Candida species, including fluconazole-resistant strains. Most strains of C. albicans, C. tropicalis, and C. parapsilosis displayed trailing growth phenomena similar to those observed in the presence of azoles ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Akihiro Kitamura, et al. Discovery of a small-molecule inhibitor of {beta}-1,6-glucan synthesis. Antimicrob Agents Chemother. 2009 Feb;53(2):670-7.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com