Cirazoline hydrochloride

Cat. No.: HY-101300 CAS No.: 40600-13-3 Molecular Formula: C₁₃H₁₇ClN₂O Molecular Weight: 252.74

Target: Adenosine Receptor Pathway: GPCR/G Protein

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

H-CI

SOLVENT & SOLUBILITY

In Vitro

H₂O: 33.33 mg/mL (131.87 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.9566 mL	19.7832 mL	39.5664 mL
	5 mM	0.7913 mL	3.9566 mL	7.9133 mL
	10 mM	0.3957 mL	1.9783 mL	3.9566 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Cirazoline hydrochloride (LD 3098 hydrochloride) is a potent competitive full α 1A-adrenergic receptor (α 1A-AR) agonist (K_i =120 nM) and only a partial agonist at $\alpha 1B$ -AR (K $_{\rm i}$ = 960 nM) and $\alpha 1D$ -AR (K $_{\rm i}$ = 660 nM) $^{[1]}.$

In Vitro

Cirazoline hydrochloride (5-10 µM; 24 hours) does not alter GIC survival and counteracted only poorly prazosin⊠induced GIC

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	Glioblastoma⊠initiating cells	
Concentration:	5 μΜ; 10 μΜ	
Incubation Time:	24 hours	
Result:	Did not effect GIC cell survival.	

In Vivo

Cirazoline hydrochloride (drinking water; 40 µM; 9 month) exhibits significantly decreased immobility in the TST and

enhances neurogenesis in the mouse	eurogenesis in the mouse ^[1]	enhances
------------------------------------	---	----------

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	B6/CBA mice $^{[1]}$	
Dosage:	40 μΜ	
Administration:	Drinking water; 40 μM; 9 month	
Result:	Reversed antidepressant-like phenotype of CAM $lpha$ 1A-AR Mice .	

REFERENCES

[1]. Doze VA, et al. alpha(1A)- and alpha(1B)-adrenergic receptors differentially modulate antidepressant-like behaviorin the mouse. Brain Res. 2009 Aug 18;1285:148-57.

[2]. Suzana Assad Kahn, et al. The Anti-Hypertensive Drug Prazosin Inhibits Glioblastoma Growth via the PKCδ-dependent Inhibition of the AKT Pathway. EMBO Mol Med. 2016 May 2;8(5):511-26.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA