Product Data Sheet

Cav 3.2 inhibitor 2

Molecular Weight:

Cat. No.: HY-151451 CAS No.: 2878598-92-4

Molecular Formula: $C_{32}H_{37}F_2N_3O$

Target: Calcium Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Dosage:

Result:

Administration:

517.65

BIOLOGICAL ACTIVITY

Description	Cav 3.2 inhibitor 2 is a $Ca_V 3.2$ T-type Ca^{2+} channels inhibitor with an IC_{50} of 0.09339 μ M under -80mV holding potential. Cav 3.2 inhibitor 2 potently suppresses T-channel-dependent somatic and visceral pain in mice. Cav 3.2 inhibitor 2 can be used for the research of intractable pain ^[1] .				
IC ₅₀ & Target	IC50: 0.09339 μ M (-80mV Ca _v 3.2), 1.109 μ M (-110mV Ca _v 3.2), 0.2167 μ M (Ca _v 3.1) $^{[1]}$				
In Vitro	Cav 3.2 inhibitor 2 (0.3 μ M) shows a produced inhibition of Ca _v 3.2 comparable to that of pimozide ^[1] . Cav 3.2 inhibitor 2 (1 and 10 μ M; 90 min) shows a binding affinity to D2 receptor significantly less than pimozide ^[1] . Cav 3.2 inhibitor 2 (0.01-10 μ M) inhibits T channels isoforms with IC ₅₀ s of 0.09339, 1.109 and 0.2167 μ M for -80mV Ca _v 3.2, -110mV Ca _v 3.2 and Ca _v 3.1, respectively ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	Cav 3.2 inhibitor 2 (1-10 mg/kg; i.p. 30 min before i.pl. Na ₂ S) affects the Na ₂ S-induced pain in vivo ^[1] . Cav 3.2 inhibitor 2 (10 mg/kg; i.p. 7 days after oxaliplatin treatment) affects oxaliplatin-induced allodynia in vivo ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model:	Mice with ${\rm Na_2S}$ intraplantar (i.pl.) administration $^{[1]}$			
	Dosage:	1, 3 and 10 mg/kg			
	Administration:	Intraperitoneal injection; 1-10 mg/kg 30 min before i.pl. Na ₂ S			
	Result:	Almost completely blocked the Na ₂ S-induced colonic pain and referred hyperalgesia.			
	Animal Model:	Wild-type (WT) or $Ca_V 3.2$ -kockout (KO) C57BL/6 mice with oxaliplatin (OHP) injection $^{[1]}$			

Intraperitoneal injection; 10 mg/kg on day 7 after oxaliplatin treatment

Attenuated the oxaliplatin-induced allodynia in WT C57BL/6 mice, while showed no effect

10 mg/kg

on KO mice.

REFERENCES					
[1]. Kasanami Y, et al. Discovery of pimozide derivatives as novel T-type calcium channel inhibitors with little binding affinity to dopamine D2 receptors for treatment of somatic and visceral pain. Eur J Med Chem. 2022 Aug 27;243:114716.					
			dical applications. For research use only.		
	Tel: 609-228-6898	Fax: 609-228-5909 Deer Park Dr, Suite Q, Monmo	E-mail: tech@MedChemExpress.com		
	Addiess. 1	beer rank bi, suite Q, Mollillo	util Juliction, NJ 00032, USA		

Page 2 of 2 www.MedChemExpress.com