Capmatinib

Cat. No.: HY-13404 CAS No.: 1029712-80-8

Molecular Formula: C₂₃H₁₇FN₆O

Molecular Weight: 412

Target: c-Met/HGFR; Apoptosis

Pathway: Protein Tyrosine Kinase/RTK; Apoptosis

Storage: Powder

3 years 4°C 2 years

In solvent -80°C 2 years

-20°C

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO: 25 mg/mL (60.68 mM; Need ultrasonic) H₂O: 4 mg/mL (9.71 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.4272 mL	12.1359 mL	24.2718 mL
	5 mM	0.4854 mL	2.4272 mL	4.8544 mL
	10 mM	0.2427 mL	1.2136 mL	2.4272 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.05 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.05 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Capmatinib (INC280; INCB28060) is a potent, orally active, selective, and ATP competitive c-Met kinase inhibitor (IC ₅₀ =0.13 nM). Capmatinib can inhibit phosphorylation of c-MET as well as c-MET pathway downstream effectors such as ERK1/2, AKT, FAK, GAB1, and STAT3/5. Capmatinib potently inhibits c-MET-dependent tumor cell proliferation and migration and effectively induces apoptosis. Antitumor activity. Capmatinib is largely metabolized by CYP3A4 and aldehyde oxidase ^{[1][2][3]} .
IC ₅₀ & Target	IC ₅₀ : 0.13 nM (c-MET) ^[1]
In Vitro	Capmatinib (INCB28060) inhibits c-MET phosphorylation with an IC ₅₀ value of approximately 1 nM and a concentration of approximately 4 nM inhibits c-MET more than 90%, which is? reversible and the effect is significantly reduced in several

hours after the compound is removed and completely disappeared by 48 hours $^{[1]}$.

?Capmatinib (INCB28060) (0-10000 nM; 72 h) inhibits the proliferation of SNU-5, S114, H441 and U-87MG $^{[1]}$.

?Capmatinib (INCB28060) (0.06-62.25 nM; 2h) effectively inhibits phosphorylation of c-MET as well as c-MET pathway downstream effectors such as ERK1/2, AKT, FAK, GAB1, and STAT3/ $5^{[1]}$.

?Capmatinib (INCB28060) (0.24-63 nM; over night) prevents HGF-stimulated H441 cell migration $^{[1]}$.

 $? Cap matinib \ (INCB28060) \ (0.5-50 \ nM; 20 \ min) \ suppresses \ phosphorylation \ of both \ EGFR \ and \ HER-3 \ rapidly \ [1].$

?Capmatinib (INCB28060) (0-333 nM; 24 h) induces apoptosis in SNU-5 cells $\[1\]$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	SNU-5, S114, H441 and U-87MG
Concentration:	0-10000 nM
Incubation Time:	72 h
Result:	Inhibited the cell viability of SNU-5 and S114, as well as the colony formation of H441 and U-87MG, with IC ₅₀ values of 1.2 nM, 12.4 nM, ~0.5 nM and 2 nM, respectively.

Cell Migration Assay [1]

Cell Line:	H441 (stimulated with 50 ng/mL recombinant human HGF for 24h)
Concentration:	0.24, 1, 4, 16 and 63 nM
Incubation Time:	Over night
Result:	Prevented HGF-stimulated H441 cell migration, with IC $_{\rm 50}$ of approximately 2 nM, and less cell migration at 16 nM.

Western Blot Analysis $^{[1]}$

Cell Line:	SNU-5
Concentration:	0.06, 0.24, 0.98, 3.91, 15.63 and 62.25 nM
Incubation Time:	2 h
Result:	Effectively inhibited phosphorylation of c-MET as well as c-MET pathway downstream effectors such as ERK1/2, AKT, FAK, GAB1, and STAT3/5.

Western Blot Analysis $^{[1]}$

Cell Line:	H1993 cells
Concentration:	0.5, 5 and 50 nM
Incubation Time:	20 min
Result:	Suppressed phosphorylation of both EGFR and HER-3 rapidly and as effectively as the compound inhibited c-MET phosphorylation in H1993 cells.

Apoptosis Analysis^[1]

Cell Line:	SNU-5 cells
Concentration:	0.017, 0.15, 1.37, 12.33, 111 and 333 nM
Incubation Time:	24 h

Result:	Effectively induced DNA fragmentation.		
Capmatinib (INCB2806	io) (1-30 mg/kg; PO, twice daily, for 2 weeks) exhibits dose-dependent inhibition of tumor growth		
	at all doses during the treatment periods, with no evidence of overt toxicity or weight loss in U-87		
?Capmatinib (INCB280 $model^{[1]}$.	60) (0.03-10 mg/kg; PO, single dosage) causes inhibition of c-MET phosphorylation in S114 tumo		
MCE has not independ	ently confirmed the accuracy of these methods. They are for reference only.		
Animal Model:	Female Balb/c nu/nu mice (inoculated subcutaneously with 5×10 ⁶ U-87MG glioblastoms cells) ^[1]		
Dosage:	1, 3, 10 and 30 mg/kg		
Administration:	PO, twice daily, for 2 weeks		
Result:	Exhibited dose-dependent inhibition of tumor growth with 35% and 76% at 1 and 3 mg, once daily; resulted in partial regressions in 6 of 10 U-87MG tumor-bearing mice at 10 mg/kg once daily; and showed well tolerance at all doses during the treatment periods, with no evidence of overt toxicity or weight loss.		
Animal Model:	Female Balb/c nu/nu mice (inoculated subcutaneously with 4×10^6 S114 tumor cells)[1]		
Dosage:	0.03, 0.1, 0.3, 1, 3 and 10 mg/kg		
Administration:	PO, single dosage		
Result:	Caused approximately 50% and 90% inhibition of c-MET phosphorylation at 0.03 and 0. mg/kg after administration of 30 min, and inhibition of phospho-c-MET exceeded 90% after 7 hours.		

CUSTOMER VALIDATION

In Vivo

- Sci Transl Med. 2018 Jul 18;10(450):eaaq1093.
- J Exp Clin Cancer Res. 2022 Sep 16;41(1):275.
- Commun Biol. 2022 Nov 26;5(1):1295.
- Cancer Res Treat. 2020 Jul;52(3):973-986.
- Separations. 2023 Apr 10, 10(4), 247.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Dhillon S. Capmatinib: First Approval. Drugs. 2020 Jul;80(11):1125-1131.

[2]. Liu X, et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res. 2011 Nov 15;17(22):7127-38.

Page 3 of 4 www.MedChemExpress.com

3]. Baltschukat S, et al. Capma Clin Cancer Res. 2019 May 15;2		st Models of Non-Small Cell Lung	Cancer and Other Cancer Types with Defined	Mechanisms of MET Activation.
	Caution: Product has no	ot been fully validated for me	dical applications. For research use only	<i>.</i>
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress.com	1
	Address: 1	Deer Park Dr, Suite Q, Monmo	uth Junction, NJ 08852, USA	

Page 4 of 4 www.MedChemExpress.com