Proteins

Product Data Sheet

CaCCinh-A01

Cat. No.: HY-100611 CAS No.: 407587-33-1 Molecular Formula: C₁₈H₂₁NO₄S Molecular Weight: 347.43

Chloride Channel Target:

Pathway: Membrane Transporter/Ion Channel

-20°C Storage: Powder 3 years

2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (287.83 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8783 mL	14.3914 mL	28.7828 mL
	5 mM	0.5757 mL	2.8783 mL	5.7566 mL
	10 mM	0.2878 mL	1.4391 mL	2.8783 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.20 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.20 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.20 mM); Clear solution

BIOLOGICAL ACTIVITY

Description CaCCinh-A01 is an inhibitor of both TMEM16A and calcium-activated chloride channel (CaCC) with IC₅₀s of 2.1 and 10 μM, respectively.

IC50: $2.1 \,\mu\text{M} \,(\text{TMEM16A})^{[1]}, 10 \,\mu\text{M} \,(\text{CaCC})^{[2]}$ IC₅₀ & Target

30 μM CaCCinh-A01 and 100 μM tannic acid strongly inhibit CaCC current following ATP stimulation^[1]. Calcium-dependent In Vitro chloride current is reduced by 38 \pm 14, 66 \pm 10, and 91 \pm 1% by 0.1, 1, and 10 μ M CaCCinh-A01, respectively. ATP-induced short-A01, respectively.

		circuit currents are reduced by 38 ± 7 and $78\pm3\%$ at 10 and $30~\mu$ M CaCCinh-A01, respectively ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	infarction when compa	CaCCinh-A01 (vein injection; 5 mg/kg; caudal vein injection within 15 min after the onset of reperfusion) significantly reduces infarction when compared with MCAO-saline treatment at 24 h or 72 h in middle cerebral artery occlusion model in mice ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Two-month-old male C57/BL6J mice ^[3]		
	Dosage:	5 mg/kg		
	Administration:	Vein injection; 5 mg/kg; caudal vein injection within 15 min after the onset of reperfusion		
	Result:	Attenuated brain infarct size, improved neurological outcomes and lowered BBB permeability after ischemic stroke in mice.		

CUSTOMER VALIDATION

- Br J Pharmacol. 2021 Dec 27.
- Biochem Pharmacol. 2020 Aug;178:114062.
- SSRN. 2023 Nov 14.
- bioRxiv. 2023 Jul 3.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES

- [1]. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloridechannel conductance in airway and intestinal epithelial cells. J Biol Chem. 2011 Jan 21;286(3):2365-74.
- [2]. De La Fuente R, et al. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloridechannel. Mol Pharmacol. 2008 Mar;73(3):758-68.
- [3]. Pin-Yi Liu, et al. TMEM16A Inhibition Preserves Blood-Brain Barrier Integrity After Ischemic Stroke. Front Cell Neurosci. 2019 Aug 6;13:360.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ {\tt MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA