CYP2C1/CYP2C19-IN-2

Cat. No.:	HY-151253	
Molecular Formula:	C ₂₇ H ₂₈ N ₂ O ₆ S	
Molecular Weight:	508.59	0
Target:	Cytochrome P450; Virus Protease	Ļ
Pathway:	Metabolic Enzyme/Protease; Anti-infection	
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

BIOLOGICAL ACTIVITY	
BIOLOGICAL ACTIVITY	
Description	CYP2C1/CYP2C19-IN-2 (compound 21d) is a potent CYP2C9/CYP2C19 inhibitor, possessing no hepatotoxicity and ames toxicity. CYP2C1/CYP2C19-IN-2 can be used in study of anti-ZIKV ^[1] .
IC ₅₀ & Target	CYP2C1, CYP2C19 ^[1] .

REFERENCES

[1]. Ezeh M I, et al. Chemoinformatic Design and Profiling of Derivatives of Dasabuvir, Efavirenz, and Tipranavir as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase and Methyltransferase. ACS Omega, 2022.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com `́́́`ОН

Product Data Sheet

MedChemExpress

Page 1 of 1