Product Data Sheet

CXCR7 modulator 2

Cat. No.: HY-112154 CAS No.: 2227426-37-9 Molecular Formula: $C_{29}H_{42}N_6O_3$ Molecular Weight: 522.68 Target: CXCR

Pathway: GPCR/G Protein; Immunology/Inflammation

Storage: Powder -20°C 3 years

> 4°C 2 years -80°C 2 years

In solvent

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (478.30 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9132 mL	9.5661 mL	19.1322 mL
	5 mM	0.3826 mL	1.9132 mL	3.8264 mL
	10 mM	0.1913 mL	0.9566 mL	1.9132 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (3.98 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.08 mg/mL (3.98 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.98 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	CXCR7 modulator 2 is a modulator of C-X-C Chemokine Receptor Type 7 (CXCR7), with a K _i of 13 nM.
IC ₅₀ & Target	CXCR7 13 nM (Ki)
In Vitro	CXCR7 modulator 2 (compound 18) demonstrates potent CXCR7-binding affinity (K_i =13 nM) and β -arrestin activity (EC_{50} =11 nM). CXCR7 modulator 2 also exhibits improved selectivity in the GPCR panel and an improved therapeutic index in the hERG

patch-clamp assay in comparison with 11c. CXCR7 modulator 2 exhibits moderate to high in vitro turn over in both NADPH-supplemented mouse-liver microsomes (MLM, 93 μ L/min/mg) and hepatocytes (28 μ L/min per million cells), shows poor passive absorptive permeability in the MDCK II-permeability assay, and has good aqueous solubility. CXCR7 modulator 2 is rapidly absorbed with a mean maximal plasma concentration (C_{max}) of 682 ng/mL, which occurrs at 0.25 h (T_{max}). The corresponding mean area under the plasma-concentration-versus-time profile (AUC) is 740 ng/mL/h^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

The administration of isoproterenol for 9 days leads to the development of cardiac fibrosis, as attested by the approximately 4-fold increase in collagen deposition relative to that in the control, which is detected by picrosirius-red staining. Treatment with CXCR7 modulator 2 results in a statistically significant reduction in cardiac fibrosis, thereby demonstrating the protective role of CXCR7 modulation with CXCR7 modulator 2 in an isoproterenol-induced cardiac injury^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

Measurements of potassium currents in HEK293 cells are stably transfected with the hERG channel^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

Mice^[1]

A total of 60 male BALB/c mice (8 weeks of age) are randomized into four study groups. In two groups, isoproterenol (5 mg/kg) is administered subcutaneously once daily for 9 days to induce cardiac fibrosis. In addition, the mice in these two groups are further treated twice daily throughout the 9 day study duration with either CXCR7 modulator 2 at 30 mg/kg (n=20) or the vehicle (n=20). The mice in the third group receives PBS and the vehicle and thus serves as controls (n=15). The fourth group (n=5), which receives both isoproterenol and CXCR7 modulator 2, are used for blood sampling at 1 and 9 h postdose on days 1, 3, 6, and 9 (1 h only) to provide an overall estimate of CXCR7 coverage relative to mouse K_i . The exposures to CXCR7 modulator 2 achieved in the BALB/c mice at the 30 mg/kg dose are approximately as expected, with the unbound Cave>95% target coverage^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Menhaji-Klotz E, et al. Discovery of a Novel Small-Molecule Modulator of C-X-C Chemokine Receptor Type 7 as a Treatment for Cardiac Fibrosis. J Med Chem. 2018 Apr 26;61(8):3685-3696.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA