MCE NedChemExpress

CP-640186 hydrochloride

 Cat. No.:
 HY-15259A

 CAS No.:
 591778-70-0

 Molecular Formula:
 C₃₀H₃₆ClN₃O₃

 Molecular Weight:
 522.08

Target: Acetyl-CoA Carboxylase

Pathway: Metabolic Enzyme/Protease

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture)

HCI

SOLVENT & SOLUBILITY

In Vitro

 $\rm H_2O$: 50 mg/mL (95.77 mM; Need ultrasonic)

DMSO : ≥ 48 mg/mL (91.94 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9154 mL	9.5771 mL	19.1542 mL
	5 mM	0.3831 mL	1.9154 mL	3.8308 mL
	10 mM	0.1915 mL	0.9577 mL	1.9154 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- Add each solvent one by one: PBS Solubility: 100 mg/mL (191.54 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.79 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.79 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.79 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

CP-640186 hydrochloride is an orally active and cell-permeable Acetyl-CoA carboxylase (ACC) inhibitor with IC $_{50}$ s of 53 nM and 61 nM for rat liver ACC1 and rat skeletal muscle ACC2 respectively. Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism that enables the synthesis of malonyl-CoA. CP-640186 hydrochloride can also stimulate muscle fatty acid oxidation^{[1][2]}.

IC ₅₀ & Target	IC50: 53 nM (rat liver AC	IC50: 53 nM (rat liver ACC1) and 61 nM (rat skeletal muscle ACC2) ^[1]			
In Vitro	CP-640186 (0.1 nM-100 μ cells and muscle strips ^{[1} CP-640186 (0.62-1.8 μM; MCE has not independe	CP-640186 (20 μ M; 48 h) treatment can inhibit H460 cell growth ^[3] . CP-640186 (0.1 nM-100 μ M; 2 h) treatment increases fatty acid metabolism in a concentration-dependent manner in C2C12 cells and muscle strips ^[1] . CP-640186 (0.62-1.8 μ M; 2 h) treatment inhibits fatty acid synthesis and TG synthesis in HepG2 cells ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Proliferation Assay ^[3]			
	Cell Line:	Human fibroblasts and H460 cells			
	Concentration:	20 μΜ			
	Incubation Time:	48 hours			
	Result:	Led to a ⊠30% decrease in cell number compared to vehicle-treated controls.			
	Cell Viability Assay ^[1]				
	Cell Line:	C2C12 cells and muscle strips			
	Concentration:	0.1 nM-100 μM			
	Incubation Time:	2 hours			
	Result:	Stimulated palmitate acid oxidation with an EC $_{50}$ of 57 nM and a maximal stimulation of 280% in C2C12 cells. Stimulated palmitate acid oxidation with an EC $_{50}$ of 1.3 μ M and a maximal stimulation of 240% in isolated rat epitrochlearis muscle.			
	Cell Viability Assay ^[1]	Cell Viability Assay ^[1]			
	Cell Line:	HepG2 cells			
	Concentration:	0.62-1.8 μΜ			
	Incubation Time:	6 hours			
	Result:	Inhibited fatty acid synthesis and TG synthesis in HepG2 cells with EC $_{\!50}$ s of 0.62 μ M and 1.8 μ M, respecticely.			
In Vivo	CP-640186 (intravenous exposure in the rat than CP-640186 (oral gavage; utilization as a source of	CP-640186 (oral gavage; 4.6-21 mg/kg; once) demonstrates acute efficacy ^[1] . CP-640186 (intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once) shows lowe drug exposure in the rat than the ob/ob mouse at equal doses ^[1] . CP-640186 (oral gavage; 100 mg/kg; once) treatment shows a complete shift from carbohydrate utilization to fatty acid utilization as a source of energy at high exposure level ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	Male ob/ob mice $^{[1]}$			
	Dosage:	4.6-21 mg/kg			
	Administration:	Oral gavage; 4.6-21 mg/kg; once			

Animal Model:	Male Sprague-Dawley rats ^[1]			
Dosage:	Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg			
Administration:	Intravenous injection and oral gavage; intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once			
Result:	Showed a plasma half-life of 1.5 h, a bioavailability of 39%, a Cl $_{\rm p}$ of 65 ml/min/kg, a V $_{\rm dss}$ of 5 liters/kg, an oral T $_{\rm max}$ of 1.0 h, an oral C $_{\rm max}$ of 345 ng/mL, and an oral AUC $_{\rm 0-\infty}$ of 960 ng•h/mL.			
Animal Model:	Male ob/ob mice ^[1]			
Dosage:	Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg			
Administration:	Intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once			
Result:	Showed a plasma half-life of 1.1 h, a bioavailability of 50%, a Cl $_{\rm p}$ of 54 ml/min/kg, an oral T $_{\rm max}$ of 0.25 h, an oral C $_{\rm max}$ of 2177 ng/mL, and an oral AUC $_{\rm 0-\infty}$ of 3068 ng•h/mL.			
Animal Model:	Twenty male Sprague-Dawley rats (350-400 g) fasted and then refed a high sucrose diet fo 2 days; additional eight rats fasted for 24 $\rm h^{[1]}$			
Dosage:	100 mg/kg			
Administration:	Oral gavage; 100 mg/kg; once			
Result:	Resulted in time-dependent reductions in RQ (a ratio of ${\rm CO_2}$ production to ${\rm O_2}$ consumption) of up to 64%.			

CUSTOMER VALIDATION

- J Exp Med. 2021 Dec 6;218(12):e20210639.
- Nutrients. 2021 May 21;13(6):1740.
- Front Oncol. 2021 Apr 22;11:665763.
- Front Oncol. 2021 Apr 6.
- Viruses. 2019 Dec 10;11(12):1145.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Daniel Hess, et al. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010 Jun 30;5(6):e11394.

[2]. Harwood HJ Jr, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experiment

Page 3 of 4 www.MedChemExpress.com

[3]. Yamashita T, et al. Design, s Med Chem Lett. 2011 Nov 1;21(2		ivity relationships of spirolactone	es bearing 2-ureidobenzothiophene a	s acetyl-CoA carboxylases inhibitors. Bioorg
	Caution: Product has r	not been fully validated for m	edical applications. For research	use only.
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExp	press.com
	Address:	1 Deer Park Dr, Suite Q, Monm	outh Junction, NJ 08852, USA	

Page 4 of 4 www.MedChemExpress.com