Proteins

Product Data Sheet

CP-640186

Cat. No.: HY-15259 CAS No.: 591778-68-6 Molecular Formula: $C_{30}H_{35}N_3O_3$ Molecular Weight: 485.62

Target: Acetyl-CoA Carboxylase Pathway: Metabolic Enzyme/Protease Storage: Powder -20°C 3 years

> 4°C 2 years In solvent -80°C 6 months

> > -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (205.92 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.0592 mL	10.2961 mL	20.5922 mL
	5 mM	0.4118 mL	2.0592 mL	4.1184 mL
	10 mM	0.2059 mL	1.0296 mL	2.0592 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.15 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.5 mg/mL (5.15 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.15 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	CP-640186 is an orally active and cell-permeable Acetyl-CoA carboxylase (ACC) inhibitor with IC $_{50}$ s of 53 nM and 61 nM for rat liver ACC1 and rat skeletal muscle ACC2 respectively. Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism that enables the synthesis of malonyl-CoA. CP-640186 can also stimulate muscle fatty acid oxidation ^{[1][2]} .
IC ₅₀ & Target	IC50: 53 nM (rat liver ACC1) and 61 nM (rat skeletal muscle ACC2) ^[1]
In Vitro	CP-640186 (20 μ M; 48 h) treatment can inhibit H460 cell growth [3].

CP-640186 (0.1 nM-100 μ M; 2 h) treatment increases fatty acid metabolism in a concentration-dependent manner in C2C12 cells and muscle strips^[1].

CP-640186 (0.62-1.8 μ M; 2 h) treatment inhibits fatty acid synthesis and TG synthesis in HepG2 cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[3]

Cell Line:	Human fibroblasts and H460 cells
Concentration:	20 μΜ
Incubation Time:	48 hours
Result:	Led to a ⊠30% decrease in cell number compared to vehicle-treated controls.

Cell Viability Assay^[1]

Cell Line:	C2C12 cells and muscle strips
Concentration:	0.1 nM-100 μM
Incubation Time:	2 hours
Result:	Stimulated palmitate acid oxidation with an EC $_{50}$ of 57 nM and a maximal stimulation of 280% in C2C12 cells. Stimulated palmitate acid oxidation with an EC $_{50}$ of 1.3 μ M and a maximal stimulation of 240% in isolated rat epitrochlearis muscle.

Cell Viability $Assay^{[1]}$

Cell Line:	HepG2 cells
Concentration:	0.62-1.8 μΜ
Incubation Time:	6 hours
Result:	Inhibited fatty acid synthesis and TG synthesis in HepG2 cells with EC $_{50} s$ of 0.62 μM and 1.8 μM , respecticely.

In Vivo

CP-640186 (oral gavage; 4.6-21 mg/kg; once) demonstrates acute efficacy $^{[1]}$.

CP-640186 (intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once) shows lowe drug exposure in the rat than the ob/ob mouse at equal doses^[1].

CP-640186 (oral gavage; 100 mg/kg; once) treatment shows a complete shift from carbohydrate utilization to fatty acid utilization as a source of energy at high exposure level $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male ob/ob mice $^{[1]}$
Dosage:	4.6-21 mg/kg
Administration:	Oral gavage; 4.6-21 mg/kg; once
Result:	Demonstrated acute efficacy for up to 8 h after oral administration, exhibiting ED_{50} values of 4.6, 9.7, and 21 mg/kg, at 1, 4, and 8 h, respectively, after treatment.
Animal Model:	Male Sprague-Dawley rats ^[1]

Page 2 of 4

Dosage:	Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg	
Administration:	Intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once	
Result:	Showed a plasma half-life of 1.5 h, a bioavailability of 39%, a Cl_p of 65 ml/min/kg, a V_{dss} of 5 liters/kg, an oral T_{max} of 1.0 h, an oral C_{max} of 345 ng/mL, and an oral $AUC_{0-\infty}$ of 960 ng•h/mL.	
Animal Model:	Male ob/ob mice $^{[1]}$	
Dosage:	Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg	
Administration:	Intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once	
Result:	Showed a plasma half-life of 1.1 h, a bioavailability of 50%, a Cl _p of 54 ml/min/kg, an oral T $_{\rm max}$ of 0.25 h, an oral C $_{\rm max}$ of 2177 ng/mL, and an oral AUC $_{\rm 0-\infty}$ of 3068 ng•h/mL.	
Animal Model:	Twenty male Sprague-Dawley rats (350-400 g) fasted and then refed a high sucrose diet for 2 days; additional eight rats fasted for 24 $h^{[1]}$	
Dosage:	100 mg/kg	
Administration:	Oral gavage; 100 mg/kg; once	
Result:	Resulted in time-dependent reductions in RQ (a ratio of CO_2 production to O_2 consumption) of up to 64%.	

CUSTOMER VALIDATION

- J Exp Med. 2021 Dec 6;218(12):e20210639.
- Nutrients. 2021 May 21;13(6):1740.
- Front Oncol. 2021 Apr 22;11:665763.
- Front Oncol. 2021 Apr 6.
- Viruses. 2019 Dec 10;11(12):1145.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES

- [1]. Daniel Hess, et al. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010 Jun 30;5(6):e11394.
- [2]. Harwood HJ Jr, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experiment
- [3]. Yamashita T, et al. Design, synthesis, and structure-activity relationships of spirolactones bearing 2-ureidobenzothiophene as acetyl-CoA carboxylases inhibitors. Bioorg

Page 3 of 4 www.MedChemExpress.com

Med Chem Lett. 2011 Nov 1;21(21):6314-8.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 4 of 4 www.MedChemExpress.com