MCE MedChemExpress

Product Data Sheet

CDN1163

 Cat. No.:
 HY-101455

 CAS No.:
 892711-75-0

 Molecular Formula:
 $C_{20}H_{20}N_2O_2$

 Molecular Weight:
 320.39

Target: Calcium Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

4°C 2 years -80°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (312.12 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1212 mL	15.6060 mL	31.2120 mL
	5 mM	0.6242 mL	3.1212 mL	6.2424 mL
	10 mM	0.3121 mL	1.5606 mL	3.1212 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.80 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (7.80 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.80 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	CDN1163 is an allosteric sarco/endoplasmic reticulum Ca^{2+} -ATPase (SERCA) activator that improves Ca^{2+} homeostasis. CDN1163 attenuates diabetes and metabolic disorders ^[1] .
IC ₅₀ & Target	SERCA ^[1]
In Vitro	CDN1163 (10? μ M; 24 hours; rat cardiac myocyte cells) treatment reduces high glucose-induced resistin and nuclear NFATc expression and increases the phosphorylation of AMPK α in a time-dependent manner ^[2] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis [2]

Cell Line:	Rat cardiac myocyte cells (H9c2)	
Concentration:	10 μΜ	
Incubation Time:	24 hours	
Result:	High glucose-induced resistin and nuclear NFATc expression are significantly reduced. The phosphorylation of AMPK α is increased in a time-dependent manner.	

In Vivo

CDN1163 (50 mg/kg; intraperitoneal injection; for 5 days; male ob/ob mice and lean ob/+ mice) increases SERCA2 Ca²⁺- ATPase activity, decreases endoplasmic reticulum (ER) stress-induced cell death in vitro and improves liver Ca²⁺ transport activity. CDN1163 reduces blood glucose levels and improves metabolic parameters and gluconeogenic gene expression, reverses hepatic steatosis, inhibits ER stress and ER stress-induced apoptosis, and improves mitochondrial efficiency in ob/ob mice in vivo^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male 8-10-week old ob/ob mice and lean ob/+ mice $^{[1]}$	
Dosage:	50 mg/kg	
Administration:	Intraperitoneal injection; for 5 days	
Result:	Markedly lowered fasting blood glucose, improved glucose tolerance, and ameliorated hepatosteatosis but did not alter glucose levels or body weight. Increased expression of uncoupling protein 1 (UCP1) and UCP3 in brown adipose tissue and reduced the hepatic expression of genes involved in gluconeogenesis and lipogenesis, attenuated ER stress response and ER stress-induced apoptosis, and improved mitochondrial biogenesis, possibly through SERCA2-mediated activation of AMP-activated protein kinase pathway	

CUSTOMER VALIDATION

- Nat Commun. 2023 Feb 23;14(1):1020.
- J Hazard Mater. 2021, 126025.
- Cancer Lett. 2023 Oct 6:216435.
- Biochem Pharmacol. 2022 Jul 6;115164.
- J Virol. 2021 Mar 10; JVI.00217-21.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Kang S, et al. Small Molecular Allosteric Activator of the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) Attenuates Diabetes and Metabolic Disorders. J Biol Chem. 2016 Mar 4;291(10):5185-98.
- $[2]. Singh R, et al.\ A role for calcium in resist in transcriptional activation in diabetic hearts. Sci Rep.\ 2018\ Oct\ 23;8(1):15633.$

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com