

Product Data Sheet

CBR-470-1

Cat. No.: HY-134205A CAS No.: 2416095-06-0 Molecular Formula: $C_{14}H_{20}CINO_4S_2$

Molecular Weight: 366

Target:Keap1-Nrf2Pathway:NF-κB

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Relative stereochemistry

SOLVENT & SOLUBILITY

In Vitro

DMSO: 200 mg/mL (546.45 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7322 mL	13.6612 mL	27.3224 mL
	5 mM	0.5464 mL	2.7322 mL	5.4645 mL
	10 mM	0.2732 mL	1.3661 mL	2.7322 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 5 mg/mL (13.66 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 5 mg/mL (13.66 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 5 mg/mL (13.66 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	CBR-470-1 is an inhibitor of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1). CBR-470-1 is also a non-covalent Nrf2
	activator. CBR-470-1 protects SH-SY5Y neuronal cells against MPP ⁺ -induced cytotoxicity through activation of the Keap1-
	$Nrf2 cascade^{[1][2]}$.

IC₅₀ & Target Keap1-Nrf2^[2]

 $\label{eq:cbr-def} \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{In Vitro} \qquad \qquad \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 } \mu\text{M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 \mu M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ of 962 nM in ARE-LUC reporter assay of IMR32 cells} \\ \text{CBR-470-1 (0.01-10 \mu M}; 24 \text{ h}) \text{ has an EC}_{50} \text{ o$

CBR-470-1 (0.5-20 μ M; 1-24 h) results in a dose- and time-dependent accumulation of Nrf2 protein in IMR32 cells^[1]. CBR-470-1 (10 μ M; 4 h) activates Nrf2 signaling cascade in SH-SY5Y cells^[2]. CBR-470-1 (10 μ M; 2 h) inhibits MPP⁺-induced oxidative injury in SH-SY5Y neuronal cells^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	IMR32 cells	
Concentration:	0.5, 1, 5, 10, 20 μΜ	
Incubation Time:	1, 2, 4, 8, 24 h	
Result:	Increased the Nrf2 protein in a dose- and time-dependent manner. Increased both mRNA and protein levels of the Nrf2-responsive genes NQO1 and HMOX1.	

REFERENCES

[1]. Bollong MJ, et, al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature. 2018 Oct;562(7728):600-604.

[2]. Zheng J, et, al. PGK1 inhibitor CBR-470-1 protects neuronal cells from MPP+. Aging (Albany NY). 2020 Jul 10;12(13):13388-13399.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA