Proteins

Butaprost

Cat. No.: HY-100448A CAS No.: 69685-22-9 Molecular Formula: $C_{24}H_{40}O_{5}$

Molecular Weight: 408.57

Target: Prostaglandin Receptor; TGF-beta/Smad

Pathway: GPCR/G Protein; Stem Cell/Wnt; TGF-beta/Smad

Solution, -20°C, 2 years Storage:

Product Data Sheet

BIOLOGICAL ACTIVITY

Description

Butaprost is a selective prostaglandin E receptor (EP2) agonist with an EC50 of 33 nM and a Ki of 2.4 µM for murine EP2 receptor. Butaprost is less activity against murine EP1, EP3 and EP4 receptors. Butaprost attenuates fibrosis by hampering TGF- β /Smad2 signalling^{[1][2][3]}.

In Vitro

Butaprost (1-100 nM; 0.5-24 hours) induces about a five-fold upregulation of Nur77 mRNA expression in hEP2-HEK293/EBNA cells in a dose- and time-dependent. Butaprost upregulated Nur77 gene expression through the PKC pathway^[1]. Butaprost (50 μM; 24 hours) reduces TGF-β-induced fibronectin (FN) expression, Smad2 phosphorylation and epithelialmesenchymal transition in Madin-Darby Canine Kidney (MDCK) cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	HEK 293/EBNA cells stably expressing the human EP2 receptor (hEP2-HEK 293/EBNA cells)
Concentration:	1 nM, 10 nM, 100 nM
Incubation Time:	0.5 hours, 1 hours, 6 hours, 24 hours
Result:	Induced about a five-fold upregulation of Nur77 mRNA expression in hEP2-HEK293/EBNA cells.

In Vivo

Butaprost (1-4 mg/kg; intraperitoneal injection; twice daily; for 7 days) treatment attenuates the development of fibrosis in mice that underwent unilateral ureteral obstruction surgery, as illustrated by a reduction in the gene and protein expression of α -smooth muscle actin, fibronectin and collagen 1A1^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male C57BL/6 mice (8 weeks of age; 21 g) bearing unilateral ureteral obstruction surgery ^[2]
Dosage:	1 mg/kg, 2 mg/kg, 4 mg/kg
Administration:	Intraperitoneal injection; twice daily; for 7 days
Result:	Attenuated the development of fibrosis in mice that underwent unilateral ureteral obstruction surgery.

REFERENCES

- [1]. Yanbin Liang, et al. Upregulation of orphan nuclear receptor Nur77 following PGF(2alpha), Bimatoprost, and Butaprost treatments. Essential role of a protein kinase C pathway involved in EP(2) receptor activated Nur77 gene transcription. Br J Pharmacol. 20
- [2]. Michael Schou Jensen, et al. Activation of the prostaglandin E 2 EP 2 receptor attenuates renal fibrosis in unilateral ureteral obstructed mice and human kidney slices. Acta Physiol (Oxf). 2019 Sep;227(1):e13291.
- [3]. K Tani, et al. Design and synthesis of a highly selective EP2-receptor agonist. Bioorg Med Chem Lett. 2001 Aug 6;11(15):2025-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com