Proteins

Benzaldehyde-PEG4-azide

Cat. No.: HY-133455 CAS No.: 1151451-77-2 Molecular Formula: $C_{15}H_{21}N_3O_5$ Molecular Weight: 323.34

Target: **PROTAC Linkers**

Pathway: PROTAC

Storage: 4°C, stored under nitrogen

* In solvent: -80°C, 6 months; -20°C, 1 month (stored under nitrogen)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: ≥ 100 mg/mL (309.27 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0927 mL	15.4636 mL	30.9272 mL
	5 mM	0.6185 mL	3.0927 mL	6.1854 mL
	10 mM	0.3093 mL	1.5464 mL	3.0927 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Benzaldehyde-PEG4-azide is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Benzaldehyde-PEG4-azide is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.
IC ₅₀ & Target	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com