Proteins

Batabulin

Cat. No.: HY-13563 CAS No.: 195533-53-0 Molecular Formula: $C_{13}H_7F_6NO_3S$ Molecular Weight: 371.26

Target: Microtubule/Tubulin; Apoptosis

Pathway: Cell Cycle/DNA Damage; Cytoskeleton; Apoptosis

Storage: Powder -20°C 3 years

> 4°C 2 years -80°C

In solvent 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

Ethanol: 100 mg/mL (269.35 mM; Need ultrasonic) DMSO: 100 mg/mL (269.35 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.6935 mL	13.4677 mL	26.9353 mL
	5 mM	0.5387 mL	2.6935 mL	5.3871 mL
	10 mM	0.2694 mL	1.3468 mL	2.6935 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.73 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.73 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.73 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Batabulin (T138067) is an antitumor agent, which binds covalently and selectively to a subset of the β -tubulin isotypes, thereby disrupting microtubule polymerization. Batabulin affects cell morphology and leads to cell-cycle arrest ultimately induces apoptotic cell death^[1].

IC₅₀ & Target β-tubulin^[1]

In Vitro

Batabulin (T138067; 30-300 nM; 24 hours; MCF7 cells) treatment shows approximately 25-30% tetraploid (4n) DNA content in cells, indicating an arrest at the ${\rm G2/M}$ cell-cycle boundary $^{[1]}$.

Batabulin (T138067; 30-300 nM; 24-48 hours; MCF7 cells) treatment shows 25-30% apoptosis. After a 48-hr exposure to 100 nM Batabulin, approximately 50-80% of the cell population is undergoing apoptosis^[1].

Batabulin (T138067) binds covalently and selectively to a subset of the β -tubulin isotypes, thereby disrupting microtubule polymerization. Covalent modification occurs at a conserved Cys-239 shared by the β 1, β 2, and β 4 tubulin isotypes. Cells exposed to Batabulin become altered in shape, indicating a collapse of the cytoskeleton, and show an increase in chromosomal ploidy^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cycle Analysis^[1]

Cell Line:	MCF7 cells	
Concentration:	30 nM, 100 nM and 300 nM	
Incubation Time:	24 hours	
Result:	Showed an arrest at the G2/M cell-cycle boundary.	

Apoptosis Analysis (1)

Cell Line:	MCF7 cells	
Concentration:	30 nM, 100 nM and 300 nM	
Incubation Time:	24 hours or 48 hours	
Result:	25-30% of cells showed the reduced DNA content characteristic of apoptotic cells.	

In Vivo

Batabulin (T138067; 40 mg/kg; intraperitoneal injection; once per week; on days 5, 12, and 19; male athymic nude mice) treatment impairs the growth of the drug-sensitive CCRF-CEM tumors [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male athymic nude mice (nu/nu) (6-8 week-old, 20-25 g) injected withCCRF-CEM cells ^[1]	
Dosage:	40 mg/kg	
Administration:	Intraperitoneal injection; once per week; on days 5, 12, and 19	
Result:	Impaired the growth of the drug-sensitive CCRF-CEM tumors.	

REFERENCES

[1]. Shan B, et al. Selective, covalent modification of beta-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5686-91.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA