Product Data Sheet
MedChemExpress

BPAM344

Cat. No.:	HY-129086
CAS No.:	1204572-55-3
Molecular Formula:	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}$
Molecular Weight:	242.27
Target:	iGlur
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling
Storage:	$4^{\circ} \mathrm{C}$, protect from light
	* In solvent : $-80^{\circ} \mathrm{C}, 6$ months; $-20^{\circ} \mathrm{C}, 1$ month (protect from light)

SOLVENT \& SOLUBILITY

In Vitro
DMSO : $250 \mathrm{mg} / \mathrm{mL}$ (1031.91 mM; Need ultrasonic)

	Solvent Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	4.1276 mL	20.6381 mL	41.2763 mL
	5 mM	0.8255 mL	4.1276 mL	8.2553 mL
	10 mM	0.4128 mL	2.0638 mL	4.1276 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo 1. Add each solvent one by one: 10% DMSO $\gg 40 \%$ PEG300 >> 5\% Tween- $80 \gg 45 \%$ saline Solubility: $\geq 2.08 \mathrm{mg} / \mathrm{mL}(8.59 \mathrm{mM})$; Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- $\beta-C D$ in saline)

Solubility: $\geq 2.08 \mathrm{mg} / \mathrm{mL}(8.59 \mathrm{mM})$; Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil

Solubility: $\geq 2.08 \mathrm{mg} / \mathrm{mL}(8.59 \mathrm{mM})$; Clear solution

BIOLOGICAL ACTIVITY

Description

In Vitro

BPAM344 is a kainate receptor (KAR) subunits GluK1b, GluK2a, and GluK3a positive allosteric modulator (PAM) ${ }^{[1]}$.

BPAM344 potentiates glutamate-evoked currents of GluK2a 21-fold at the highest concentration tested ($200 \mu \mathrm{M}$), with an EC 50 of $79 \mu \mathrm{M}$. BPAM344 markedly decreases desensitization kinetics (from 5.5 to 775 ms), whereas it only has a minor effect on deactivation kinetics ${ }^{[1]}$.

BPAM344 (100 $\mu \mathrm{M}$) also potentiates the peak current amplitude of KAR subunits GluK3a (59-fold), GluK2a (15-fold), GluK1b
(5-fold), as well as the AMPA receptor subunit GluA1i (5-fold) ${ }^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Anja Probst Larsen, et al. Identification and Structure-Function Study of Positive Allosteric Modulators of Kainate Receptors. Mol Pharmacol. 2017 Jun;91(6):576-585.

Caution: Product has not been fully validated for medical applications. For research use only.

[^0]
[^0]: Tel: 609-228-6898 Fax: 609-228-5909 E-mail:tech@MedChemExpress.com
 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

