Inhibitors

BMS-986121

Cat. No.: HY-141515 CAS No.: 313671-26-0 Molecular Formula: $C_{15}H_{\alpha}Cl_{\gamma}N_{\gamma}O_{\gamma}S$

Molecular Weight: 366.22

Target: **Opioid Receptor**

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder

> 4°C 2 years

3 years

-80°C In solvent 6 months

-20°C

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (273.06 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7306 mL	13.6530 mL	27.3060 mL
	5 mM	0.5461 mL	2.7306 mL	5.4612 mL
	10 mM	0.2731 mL	1.3653 mL	2.7306 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description BMS-986121 is a positive allosteric modulator (PAM) of the μ opioid receptor extracted from patent WO2014107344. BMS-

986121 is built on a chemical scaffold representing a new chemotype for μ receptor PAMs^{[1][2][3]}.

IC₅₀ & Target μ Opioid Receptor/MOR

In Vitro BMS-986121 (1 μ M \sim 1 mM) significantly augments the β -arrestin–recruitment response produced by a low concentration of $endomorphin-I \ (PAM-detection\ mode).\ BMS-986121\ significantly\ increases\ the\ inhibition\ of\ forskolin-stimulated\ adenylyl$ cyclase activity produced by a -EC $_{10}$ (30 pM) concentration of endomorphin-I in CHO μ cells. BMS-986121 (100 μ M) produces

leftward shifts in the potency of endomorphin-I (fourfold) and leu-enkephalin (sixfold), in inhibition of forskolin-stimulated cAMP-accumulation assays in CHO- μ cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Burford NT, et al. Discover 10835.	y of positive allosteric modu	lators and silent allosteric modul	lators of the μ-opioid receptor. Prod	c Natl Acad Sci U S A. 2013;110(26):10830-
[2]. WO2014107344				
[3]. Bisignano P, et al. Ligand-	Based Discovery of a New Sc	affold for Allosteric Modulation c	of the μ-Opioid Receptor. J Chem In	f Model. 2015;55(9):1836-1843.
			nedical applications. For research	
	Tel: 609-228-6898 Address:	Fax: 609-228-5909 1 Deer Park Dr, Suite Q, Monm	E-mail: tech@MedChemE nouth Junction, NJ 08852, USA	xpress.com
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	

Page 2 of 2 www.MedChemExpress.com