Product Data Sheet

BMS-309403 sodium

Cat. No.: HY-101903A CAS No.: 2802523-05-1 Molecular Formula: $C_{31}H_{25}N_2NaO_3$

Molecular Weight: 496.53 Target: **FABP**

Pathway: Metabolic Enzyme/Protease

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 100 mg/mL (201.40 mM; Need ultrasonic) DMSO: 50 mg/mL (100.70 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0140 mL	10.0699 mL	20.1398 mL
	5 mM	0.4028 mL	2.0140 mL	4.0280 mL
	10 mM	0.2014 mL	1.0070 mL	2.0140 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.03 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (5.03 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

BMS-309403 sodium is a potent, orally active, and selective adipocyte fatty acid binding protein (also known as FABP4, aP2) inhibitor, with Kis of <2, 250, and 350 nM for FABP4, FABP3, and FABP5, respectively. BMS-309403 sodium interacts with the fatty-acid-binding pocket within the interior of the protein and competitively inhibits the binding of endogenous fatty acids. BMS-309403 sodium improves endothelial function in apolipoprotein E-deficient mice and in cultured human endothelial cells^{[1][2][3]}.

In Vitro

Treatment with BMS-309403 significantly decreased MCP-1 production from THP-1 macrophages in a dose- and timedependent manner^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Page 1 of 2

In Vivo

BMS-309403 sodium (15 mg/kg; chronic treatment; daily for 6 weeks) improves endothelial function, phosphorylated and total eNOS and reduced plasma triglyceride levels but did not affect endothelium-independent relaxations^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	C57BL/6J mice (ApoE $^{-/-}$ mice) $^{[3]}$	
Dosage:	15 mg/kg	
Administration:	Chronic treatment; daily for 6 weeks	
Result:	Significantly increased the phosphorylated eNOS (Ser1177) and total eNOS but not the phosphorylated to total eNOS ratio in aortae of 18 weeks old Apo $E^{-/-}$ mice.	

CUSTOMER VALIDATION

- Bone Res. 2022 Jun 22;10(1):45.
- Int J Biol Sci. 2021 Oct 11;17(15):4207-4222.
- Cell Death Dis. 2019 May 16;10(6):382.
- Free Radic Biol Med. 2022 Jul 15;S0891-5849(22)00474-9.
- Antioxidants (Basel). 2023, 12(1), 74.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Sulsky R, et al. Potent and selective biphenyl azole inhibitors of adipocyte fatty acid binding protein (aFABP). Bioorg Med Chem Lett. 2007;17(12):3511-3515.

[2]. Lin W, et al. BMS309403 stimulates glucose uptake in myotubes through activation of AMP-activated protein kinase. PLoS One. 2012;7(8):e44570.

[3]. Lee MY, et al. Chronic administration of BMS309403 improves endothelial function in apolipoprotein E-deficient mice and in cultured human endothelial cells. Br J Pharmacol. 2011;162(7):1564-1576.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA