Proteins

BMS-191011

Cat. No.: HY-108593 CAS No.: 202821-81-6 Molecular Formula: $C_{16}H_{10}ClF_{3}N_{2}O_{3}$

Molecular Weight: 370.71

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder

3 years 4°C 2 years

In solvent -80°C 2 years

-20°C

-20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (269.75 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6975 mL	13.4876 mL	26.9753 mL
	5 mM	0.5395 mL	2.6975 mL	5.3951 mL
	10 mM	0.2698 mL	1.3488 mL	2.6975 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.61 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.61 mM); Clear solution

BIOLOGICAL ACTIVITY

	Description	, , ,	MS 191011 (BMS-A) is a potent BK _{Ca} channel opener (large-conductance Ca ²⁺ -activated potassium channel). BMS-191011 hows neuroprotective activities in rodent models of stroke ^[1] .	
In Vitro		BMS-191011 (20 or 40 μ M) activates BK channels in IGR39 cells, and leads to potentiation in Panc-1 cells ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[3]		
		Cell Line:	IGR39 and Panc-1 cells	

Concentration:	20 or 40 μM	
Incubation Time:		
Result:	Activated BK channels in less than 50% IGR39 cells and led to less than two-fold potentiation in Panc-1 cells.	
	Promoted the activation of a voltage-independent K ⁺ conductance at negative voltages.	

In Vivo

BMS-191011 (intravenous injection; 10-100 μ g/kg; once) dilates rat retinal arterioles through activation of iberiotoxinsensitive BK(Ca) channels in vivo^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Wistar rats (8- to 10-week-old) treated with Tetrodotoxin (50 $\mu g/kg$, intravenously (i.v.)) $^{[2]}$
Dosage:	10-100 μg/kg
Administration:	Intravenous injection; 10-100 μg/kg; once
Result:	Increased the diameter of retinal arterioles, showed no significant effect on mean arterial pressure and heart rate.

CUSTOMER VALIDATION

- Br J Pharmacol. 2021 Jul 3.
- Eur J Pharmacol. 2023 Apr 19;175743.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Asami Mori, et al. BMS-191011, an opener of large-conductance Ca2+-activated potassium channels, dilates rat retinal arterioles in vivo. Biol Pharm Bull. 2011;34(1):150-2.

[2]. Remigante A, et al. NS-11021 Modulates Cancer-Associated Processes Independently of BK Channels in Melanoma and Pancreatic Duct Adenocarcinoma Cell Lines. Cancers (Basel). 2021 Dec 6;13(23):6144.

[3]. Romine JL, et al. 3-[(5-Chloro-2-hydroxyphenyl)methyl]-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, BMS-191011: opener of large-conductance Ca(2+)-activated potassium (maxi-K) channels, identification, solubility, and SAR. J Med Chem. 2007 Fe

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com