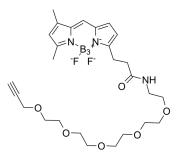
Product Data Sheet

BDP FL-PEG5-propargyl

Cat. No.: HY-141087

CAS No.: 2093197-93-2 Molecular Formula: $C_{27}H_{38}B_3F_2N_3O_6^{2-}$


Molecular Weight: 571.04

Target: **PROTAC Linkers**

Pathway: PROTAC

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (175.12 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7512 mL	8.7560 mL	17.5119 mL
	5 mM	0.3502 mL	1.7512 mL	3.5024 mL
	10 mM	0.1751 mL	0.8756 mL	1.7512 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	BDP FL-PEG5-propargyl is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs $^{[1]}$.
IC ₅₀ & Target	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com