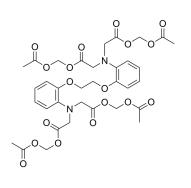
BAPTA-AM


Cat. No.:	HY-100545				
CAS No.:	126150-97-8				
Molecular Formula:	$C_{34}H_{40}N_2O_{18}$				
Molecular Weight:	764.68				
Target:	Potassium Channel				
Pathway:	Membrane Transporter/Ion Channel				
Storage:	Powder	-20°C	3 years		
		4°C	2 years		
	In solvent	-80°C	2 years		
		-20°C	1 year		

SOLVENT & SOLUBILITY

In Vitro	0, (DMSO : 50 mg/mL (65.39 mM; Need ultrasonic) H ₂ O : < 0.1 mg/mL (ultrasonic) (insoluble)						
		Solvent Mass Concentration	1 mg	5 mg	10 mg			
	Preparing Stock Solutions	1 mM	1.3077 mL	6.5387 mL	13.0774 mL			
	Stock Solutions	5 mM	0.2615 mL	1.3077 mL	2.6155 mL			
		10 mM	0.1308 mL	0.6539 mL	1.3077 mL			
	Please refer to the so	Please refer to the solubility information to select the appropriate solvent.						
In Vivo		1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (3.27 mM); Clear solution						
		 Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (3.27 mM); Suspended solution; Need ultrasonic 						
		nt one by one: 10% DMSO >> 90% corn oil mg/mL (3.27 mM); Clear solution						

BIOLOGICAL ACTIV	
Description	BAPTA-AM is a well-known membrane permeable Ca ²⁺ chelator. BAPTA-AM inhibits hERG channels, hKv1.3 and hKv1.5 channels in HEK 293 cells with IC ₅₀ s of 1.3 μM, 1.45 μM and 1.23 μM, respectively ^[1] .
IC₅₀ & Target	Ca ²⁺ chelator ^[1] IC50: 1.3 μM (hERG channel, in HEK 293 cells), 1.45 μM (hKv1.3, in HEK 293 cells), 1.23 μM (hKv1.5, in HEK 293 cells) ^[1]

RedChemExpress

Product Data Sheet

In Vitro

BAPTA-AM inhibits neuronal Ca^{2+} -activated K⁺ channel currents, and up-regulates the decreased cardiac sodium current (INa) density by chelating intracellular $Ca^{2+[1]}$.

BAPTA-AM (BAPTA/AM), an intracellular calcium chelator, induces delayed necrosis by lipoxygenase-mediated free radicals in mouse cortical cultures. BAPTA-AM prevents free radical-mediated toxicity promote apoptosis in non-neuronal cells and produce a beneficial effect in neuronal cells by protecting neurons from ischemic damage. In addition, it has been suggested that BAPTA-AM induces a late, but not early, increase of intracellular calcium in I-IL-60 neoplastic cells. Mixed cortical cell cultures (DIV 13-16) exposed to 10 µM BAPTA-AM for 24- or 48-hr show moderate (45-70%) neuronal injury as evaluated by increased LDH release into the bathing medium after 24-48-hr. Exposure of cortical cultures to 3-10 µM BAPTA-AM for 48-hr evoke dose-dependent neuronal damage^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay ^[1]

Neuronal injury is quantitatively estimated by measuring lactate dehydrogenase (LDH) released from damaged cells into the bathing medium 24- or 48-hr after the 10 μ M BAPTA/AM treatment. The morphological findings are confirmed by staining with neuron-specific enolase (NSE) antibody and tryphan blue^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2022 Feb 16;7(1):46.
- Nat Immunol. 2019 Apr;20(4):433-446.
- Cell Stem Cell. 2022 Oct 12;S1934-5909(22)00417-9.
- Nat Commun. 2023 Feb 6;14(1):642.
- Nat Commun. 2021 May 18;12(1):2915.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Wie MB, et al. BAPTA/AM, an intracellular calcium chelator, induces delayed necrosis by lipoxygenase-mediated free radicals in mouse cortical cultures. Prog Neuropsychopharmacol Biol Psychiatry. 2001 Nov;25(8):1641-59.

[2]. Tang Q, et al. The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK 293 cells. Biochem Pharmacol. 2007 Dec 3;74(11):1596-607.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fa

Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA